COVID-19
Scientific literature review

A digest of peer-reviewed articles from top-ranked journals on selected research topics related to SARS-CoV-2 and COVID-19

Selection of
YEAR 2021

L’ANRS|Emerging Infectious Diseases shares a selection of the most relevant articles published on COVID-19 on a weekly basis. This literature review not only presents a selection of references, but also highlights the key points and messages from each article. It does not include pre-print articles.

Our objective is to help the scientific community, health-workers and public health decision makers, being up to date with the latest scientific research.

Coordinated by:
ANRS-EID/I3M:
Erica Telford
& Eric D’Ortenzio

Redaction committee
ANRS Emerging Infectious Diseases / Inserm- Thematic Institute of Immunology, Inflammation, Infectiology, and Microbiology (I3M):
Claire Brugerolles; Xyomara Chavez-Pacheco; Mario Delgado-Ortega;
Claire Madelaine; Inmaculada Ortega-Perez; Erica Telford

Documented by (until Sept. 2020):
Inserm- Collective Expertise Unit:
Bénédicte Varignon
& Laurent Fleury

With a precious contribution from:
• Former members of the redaction committee: Guia Carrara; Eric D’Ortenzio; Evelyne Jouvin-Marche; Boris Lacarra; Oriane Puéchal;
Renaud Vatrinet, the MODCOV19 Team
• Inserm- Department of Partnerships and External Relations (DPRE)
• Inserm- USA office

Additional links:
Haute Autorité de Santé: https://www.scoop.it/topic/coronavirus-covid-19-has-veille?nosug=1
MODCOV19: https://modcov19.math.cnrs.fr/veille_public/
Aim: to describe the rates for consulting a general practitioner (GP) for sequelae after acute covid-19 in patients admitted to hospital with covid-19 and those managed in the community, and to determine how the rates change over time for patients in the community and after vaccination for covid-19.

Participants: 456 002 Covid-19 patients between 1 Aug 2020 and 14 Feb 2021 (44.7% men; median age 61 years), admitted to hospital within two weeks of diagnosis or managed in the community, and followed-up for a maximum of 9.2 months. Negative control group: individuals without covid-19 (n=38 511) and patients with influenza before the pandemic (n=21 803).

Results:
> Relative to the negative control and influenza cohorts, patients in the community (n=437 943) had significantly higher GP consultation rates for multiple sequelae, and the most common were loss of smell or taste, or both (adjusted hazard ratio 5.28, 95% CI 3.89 to 7.17, P<0.001); venous thromboembolism (3.35, 2.87 to 3.91, P<0.001); lung fibrosis (2.41, 1.37 to 4.25, P=0.002), and muscle pain (1.89, 1.63 to 2.20, P<0.001); and also for healthcare use after a diagnosis of covid-19 compared with 12 months before infection.

> For absolute proportions, the most common outcomes ≥4 weeks after a covid-19 diagnosis in patients in the community were joint pain (2.5%), anxiety (1.2%), and prescriptions for non-steroidal anti-inflammatory drugs (1.2%).

> Patients admitted to hospital (n=18 059) also had significantly higher GP consultation rates for multiple sequelae, most commonly for venous thromboembolism (16.21, 11.28 to 23.31, P<0.001), nausea (4.64, 2.24 to 9.21, P<0.001), prescriptions for paracetamol (3.68, 2.86 to 4.74, P<0.001), renal failure (3.42, 2.67 to 4.38, P<0.001), and healthcare use after a covid-19 diagnosis compared with 12 months before infection.

> For absolute proportions, the most common outcomes ≥4 weeks after a covid-19 diagnosis in patients admitted to hospital were venous thromboembolism (3.5%), joint pain (2.7%), and breathlessness (2.8%).

> In patients in the community, anxiety and depression, abdominal pain, diarrhoea, general pain, nausea, chest tightness, and tinnitus persisted throughout follow-up.

> GP consultation rates were reduced for all symptoms, prescriptions, and healthcare use, except for neuropathic pain, cognitive impairment, strong opiates, and paracetamol use in patients in the community after the first vaccination dose for covid-19 relative to before vaccination. GP consultation rates were also reduced for ischaemic heart disease, asthma, and gastro-oesophageal disease.

GP consultation rates for sequelae after acute covid-19 infection differed between patients who were admitted to hospital and those managed in the community. For individuals in the community, rates of some sequelae decreased over time but those for others, such as anxiety and depression, persisted.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Transl Med, 30DEC2021 | Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection | Vremillion M.S, et al. USA gotopaper | Therapeutics | **Background**
Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). To make RDV more convenient for non-hospitalized patients earlier in disease, administration routes other than IV are being evaluated.

> pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM).

Findings
> Relative to an IV administration of RDV at 10 mg/kg, an approximately 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues.
> Distribution of the active triphosphate into the upper respiratory tract was also observed following inhaled RDV exposure.
> Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with IV RDV dosing.
> An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo.
> Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning approximately 8 hours post-infection.
> The efficacy of inhaled RDV was similar to that of IV RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. |

| NEJM 30DEC2021 | Plasma Neutralization of the SARS-CoV-2 Omicron Variant | Schmidt F., et al. USA gotopaper | Vaccines | **Aim:** to measure neutralizing antibody titers against Wuhan-hu-1, synthetic polymutant spike protein (PMS20), and omicron spike pseudotypes in 169 plasma specimens from 47 persons with previous infection, vaccination, or both.

Results
> Plasma 1 month and 6 months after infection: the 50% neutralization titer (NT50) values were a mean (±SD) of 60±47 and 37±27 times lower for PMS20 than for Wuhan-hu-1, respectively, and 58±51 and 32±23 times lower for omicron than for Wuhan-hu-1.
> Similarly, plasma obtained from different persons in the same cohort 1 year after infection had NT50 values that were 34±24 times lower for PMS20 and 43±23 times lower for omicron than for Wuhan-hu-1.
> Plasma 1.3 months after receiving two doses of an mRNA vaccine: the NT50 values were 187±24 times lower for PMS20 and 127±166 times lower for omicron than for Wuhan-hu-1 (Fig. S3A).
> At 5 months after vaccination, the neutralization potency was 58±23 times lower for PMS20 and 27±17 times lower for omicron.
> Vaccination of persons who had recovered from Covid-19 or administration of a third dose ≥6 months after the second dose of an mRNA vaccine led to a substantial gain in neutralizing activity against PMS20 and omicron. Specifically,
> After vaccination in persons who had previously been infected with SARS-CoV-2: the NT50 values were 238 times, 214 times, and 154 times greater for Wuhan-hu-1, PMS20, and omicron pseudotypes, respectively, than the prevaccination convalescent-phase titers in the same persons.
> Administration of a third dose 6 months after two doses of an mRNA vaccine (sampling 1 month after 3rd dose): the NT50 values after the booster dose were 26 times greater for Wuhan-hu-1, 35 times greater for PMS20, and 38 times greater for omicron.
> Neutralizing titers against omicron were substantial (1411 to 56,537) in all persons who had had Covid-19 and were then vaccinated and in those who had three doses of an mRNA vaccine, but titers were low or undetectable in many unvaccinated persons who had had Covid-19 and in recipients of only two doses of an mRNA vaccine.

Omicron variant shows an unprecedented degree of neutralizing antibody escape but boosting and promoting affinity maturation of antibodies will provide additional protection. |
Characteristics and Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared With Previous Waves

Maslo C., et al.
South Africa

Title: Characteristics and Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared With Previous Waves

Field of expertise: Clinic

Journal and date: JAMA 30DEC2021

Key facts

Methods

> We identified the period when 26% positivity rates were reached in the previous waves (wave 1: June 14 to July 6, 2020; wave 2: December 1-23, 2020; wave 3: June 1-23, 2021) and compared them with the fourth wave (November 15 to December 7, 2021).

> All patients hospitalized with a positive COVID-19 result were included. Patient characteristics, need for oxygen supply and mechanical ventilation, admission to intensive care, length of stay (LOS), and mortality rates were included.

Findings

> The number of patients treated in the hospitals during the same early period of each wave differed (2351 in wave 4 vs maximum 6342 in wave 3); however, 68% to 69% of patients presenting to the emergency department with a positive COVID-19 result were admitted to the hospital in the first 3 waves vs 41.3% in wave 4.

> Patients hospitalized during wave 4 were younger (median age, 36 years vs maximum 59 years in wave 3; P < .001) with a higher proportion of females. Significantly fewer patients with comorbidities were admitted in wave 4, and the proportion presenting with an acute respiratory condition was lower (31.6% in wave 4 vs maximum 91.2% in wave 3, P < .001). Of 971 patients admitted in wave 4, 24.2% were vaccinated, 66.4% were unvaccinated, and vaccination status was unknown for 9.4%.

> The proportion of patients requiring oxygen therapy significantly decreased (17.6% in wave 4 vs 74% in wave 3, P < .001) as did the percentage receiving mechanical ventilation. Admission to intensive care was 18.5% in wave 4 vs 29.9% in wave 3 (P < .001).

> The median LOS (between 7 and 8 days in previous waves) decreased to 3 days in wave 4. The death rate was between 19.7% in wave 1 and 29.1% in wave 3 and decreased to 2.7% in wave 4.

Further research is needed to determine if the differences between waves are affected by preexisting acquired or natural immunity (44.3% of the adult South African population was vaccinated as of December 2021 and >50% of the population had previous exposure to SARS-CoV-2) or if Omicron may be less pathogenic than previous variants.

Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa

Collie S., et al.
South Africa

Title: Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa

Field of expertise: Vaccines

Journal and date: NEJM 29DEC2021

Aim: to estimate the vaccine effectiveness of two doses of the BNT162b2 vaccine (i.e., full vaccination) against hospitalization for Covid-19 caused by the omicron variant using data from Discovery Health, a South African managed care organization.

- Comparison of vaccine effectiveness (in fully vaccinated) against Covid-19 hospitalization associated with the omicron variant during omicron dominance period (Nov 15 to Dec 7 – omicron proxy period) against estimates of vaccine effectiveness during delta dominance period (Sept 1-Oct 30 – comparator period)

- Three sensitivity analyses on omicron proxy period: PCR tests showing S-gene target failure, only PCR results from patients in Gauteng province, PCR test results from patients who had been hospitalized.

Results

> Analysis of 133,437 PCR test results for the comparator period, of which 38,155 (28.6%) obtained ≥14 days after the patient had received the second dose of vaccine, and 78,173 PCR test results for the proxy omicron period, of which 32,325 (41.4%) obtained ≥14 days after the second dose.

> Overall test positivity was 6.4% during the comparator period and 24.4% during the proxy omicron period, whereas the Covid-19 admission rate was 10.8% and 2.2%, respectively, as a percentage of positive PCR test results. Positive cases were younger during the proxy omicron period than during the comparator period.

> Vaccine effectiveness during the proxy omicron period was 70% (95% CI, 62 to 76). Vaccine effectiveness during the comparator period was 93% (95% CI, 90 to 94) against hospitalization for Covid-19.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 29DEC2021 | Third BNT162b2 Vaccination Neutralization of SARS-CoV-2 Omicron Infection | Namet I., et al. Israel | Vaccines | Aim: to test in vitro neutralization of omicron-infected cells by serum samples of participants vaccinate with 2 or 3 BNT162b2 doses.
- Microneutralization assays with wild-type virus and beta, delta, and omicron variant isolates using serum samples from two groups of 20 health care workers who received either two doses of the BNT162b2 vaccine (mean, 165.6 days since receipt of the second dose), or three vaccine doses (mean, 25 days since receipt of the third dose)
Results
> Receipt of three vaccine doses led to better neutralization of the wild-type virus and the three variants than receipt of two vaccine doses. The geometric mean titers (GMT) of the wild-type virus and the beta, delta, and omicron variants were 16.56, 1.27, 8.00, and 1.11, respectively, after receipt of the second vaccine dose and 891.4, 152.2, 430.5, and 107.6, respectively, after receipt of the third dose.
> A significantly lower neutralization efficiency of the BNT162b2 vaccine against all the tested variants of concern than against the wild-type virus was observed after two doses than after three. The third dose of the BNT162b2 vaccine efficiently neutralized infection with the omicron variant.
No neutralization efficiency against the omicron variant was observed after 2 doses, but this increased (by a factor of 100) after the third dose than after the second dose. However, even with three doses, neutralization against the omicron variant was lower (by a factor of 4) than that against the delta variant. |
| Cell 24DEC2021 | The Omicron variant is highly resistant against antibody-mediated neutralization – implications for control of the COVID-19 pandemic | Hoffmann M., et al. Germany | Variants | Findings
> Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by Sotrovimab.
> Omicron spike evaded neutralization by antibodies from convalescent or BNT162b2-vaccinated individuals with 10- to 44-fold higher efficiency than the spike of the Delta variant.
> Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1/BNT162b2-vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike.
These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant. |
- Paediatric and adult COVID-19 patients and healthy controls (total n=93) analysis using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples.
Results
> In healthy paediatric airways, cells were already in an interferon-activated state, that upon SARS-CoV-2 infection was further induced especially in airway immune cells. Higher paediatric innate interferon-responses might restrict viral replication and disease progression.
> The systemic response in children was characterised by increases in naive lymphocytes and a depletion of natural killer cells, while in adults cytotoxic T cells and interferon-stimulated subpopulations were significantly increased.
> Evidence that dendritic cells initiate interferon signaling in early infection was found, and novel epithelial cell states that associate with COVID-19 and age were identified.
Matching nasal and blood data showed a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were massively reduced in paediatric patients. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Immunol. 22DEC2021</td>
<td>Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection</td>
<td>Dowell A.C., et al. UK gotopaper</td>
<td>Immunology</td>
<td>Aim: to compare antibody and cellular immunity in children (aged 3–11 years) and adults.</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td>Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neutralization of viral variants was comparable between children and adults.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for spike protein.</td>
</tr>
<tr>
<td>Lancet 23DEC2021</td>
<td>Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial</td>
<td>Halperin S.A., et al. International gotopaper</td>
<td>Vaccines</td>
<td>Aim: to report results on the final efficacy and interim safety analyses of the phase 3 trial of the Ad5-nCoV vaccine.</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
<td>Double-blind, randomised, international, placebo-controlled, endpoint-case driven, phase 3, clinical trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adults aged 18 years older at study centres in Argentina, Chile, Mexico, Pakistan, and Russia (non unstable or severe underlying medical or psychiatric conditions; no history of a laboratory-confirmed SARS-CoV-2 infection, not pregnant or breastfeeding, no previous receipt of an adenovirus-vectorised, coronavirus vaccine).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Randomisation in a 1:1 ratio: single intramuscular dose of 0.5 mL placebo or a 0.5 mL dose of 5 × 1010 viral particle (vp)/mL Ad5-nCoV vaccine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary efficacy objective: capacity of Ad5-nCoV in preventing symptomatic, PCR-confirmed COVID-19 infection occurring at least 28 days after vaccination in all participants who were at least 28 days postvaccination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary safety objective: incidence of any serious adverse events or medically attended adverse events postvaccination in all participants who received a study injection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings Study enrolment began on Sept 22, 2020, in Pakistan, Nov 6, 2020, in Mexico, Dec 2, 2020, in Russia and Chile, and Dec 17, 2020, in Argentina; 150 endpoint cases were reached on Jan 15, 2021, triggering the final primary efficacy analysis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One dose of Ad5-nCoV showed a 57.5% (95% CI 39.7–70.0, p=0.0026) efficacy against symptomatic, PCR-confirmed, COVID-19 infection at 28 days or more postvaccination (21 250 participants; 45 days median duration of follow-up [IQR 36–58]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary safety analysis. (36 717 participants)–> no significant difference in the incidence of serious adverse events (</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In the extended safety cohort, 1004 (63.5%) of 1582 of Ad5-nCoV recipients and 729 (46.4%) of 1572 placebo recipients reported a solicited systemic adverse event (p=0.0001), of which headache was the most common (599 [44%] of Ad5-nCoV recipients and 481 [30.6%] of placebo recipients; p=0.001) and 971 (61.3%) of 1584 Ad5-nCoV recipients and 314 (20.0%) of 1573 placebo recipients reported an injection-site adverse event (p=0.0001), of which pain at the injection site was the most frequent; reported by 939 (59%) Ad5-nCoV recipients and 303 (19%) placebo recipients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusions One dose of Ad5-nCoV is efficacious and safe in healthy adults aged 18 years and older.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
> In a Phase 2a double-blind, placebo-controlled, randomized, multicenter clinical trial, we evaluated the safety, tolerability, and antiviral efficacy of the nucleoside analog molnupiravir in 202 unvaccinated participants with confirmed SARS-CoV-2 infection and with symptom duration <7 days.
> Participants were randomized 1:1 to receive 200 mg molnupiravir or placebo, and then 3:1 to receive molnupiravir (400 or 800 mg) or placebo, orally twice daily for 5 days.
> Infectious virus was assessed by inoculation of cultured Vero cells with samples from nasopharyngeal swabs and was detected by RT-PCR.

Findings
> Time to viral RNA clearance (primary endpoint) was decreased in the 800 mg molnupiravir group (median 14 days) compared to the placebo group (median 15 days) (log rank p-value=0.013).
> 92.5% of participants receiving 800 mg molnupiravir achieved viral RNA clearance compared with 80.3% of placebo recipients by study end (4 weeks).
> Infectious virus (secondary endpoint) was detected in swabs from 1.9% of the 800 mg molnupiravir group compared with 16.7% of placebo group at day 3 of treatment (p =0.016).
> At day 5 of treatment, infectious virus was not isolated from any participants receiving 400 or 800 mg molnupiravir compared with 11.1% of placebo recipients (p =0.034 and 0.027, respectively).
> Molnupiravir was well tolerated, with a similar number of adverse events across all doses. |
| NEJM 22DEC2021 | Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients | Gottileb R.L., et al. USA | Therapeutics | **Methods**
> Randomized, double-blind, placebo-controlled trial involving nonhospitalized patients with Covid-19 who had symptom onset within the previous 7 days and who had at least one risk factor for disease progression
> Age ≥60 years, obesity, or certain coexisting medical conditions.
> Randomly assigned to receive intravenous remdesivir (200 mg on day 1 and 100 mg on days 2 and 3) or placebo.

Primary efficacy end point: a composite of Covid-19–related hospitalization or death from any cause by day 28.
Primary safety end point: any adverse event.
Secondary end point: composite of a Covid-19–related medically attended visit or death from any cause by day 28.

Findings
> 562 patients underwent randomization and received at least one dose of remdesivir or placebo were included in the analyses:
> 279 patients in the remdesivir group and 283 in the placebo group.
> Covid–19–related hospitalization or death from any cause occurred in 2 patients (0.7%) in the remdesivir group and in 15 (5.3%) in the placebo group (hazard ratio, 0.13; 95% confidence interval [CI], 0.03 to 0.59; P=0.008).
> A total of 4 of 246 patients (1.6%) in the remdesivir group and 21 of 252 (8.3%) in the placebo group had a Covid–19–related medically attended visit by day 28 (hazard ratio, 0.19; 95% CI, 0.07 to 0.56).
> No patients had died by day 28. Adverse events occurred in 42.3% of the patients in the remdesivir group and in 46.3% of those in the placebo group.

Conclusions
Among nonhospitalized patients who were at high risk for Covid-19 progression, a 3-day course of remdesivir had an acceptable safety profile and resulted in an 87% lower risk of hospitalization or death than placebo. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
- Paediatric and adult COVID-19 patients and healthy controls (total n=93) analysis using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples.
Results
> In healthy paediatric airways, cells were already in an interferon-activated state, that upon SARS-CoV-2 infection was further induced especially in airway immune cells. Higher paediatric innate interferon-responses might restrict viral replication and disease progression.
> The systemic response in children was characterised by increases in naive lymphocytes and a depletion of natural killer cells, while in adults cytotoxic T cells and interferon-stimulated subpopulations were significantly increased.
> Evidence that dendritic cells initiate interferon signaling in early infection was found, and novel epithelial cell states that associate with COVID-19 and age were identified.
Matching nasal and blood data showed a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were massively reduced in paediatric patients. |
Method
> This prospective cohort study, conducted at a single medical center in Haifa, Israel, from May to July 2021, included women with a singleton pregnancy over 24 weeks of gestation at least 7 days after receipt of their second COVID-19 vaccine dose who were not known to be previously infected with COVID-19.
> The primary outcomes were SARS-CoV-2 IgG antibody titers measured in the parturient at admission and in the umbilical cord blood within 30 minutes after delivery. Secondary outcomes were the correlation between antibody titers, feto-maternal characteristics, maternal adverse effects after vaccination, and time interval from vaccination to delivery.
Findings
> Antibody levels were measured for 129 women (mean [SD] age, 31.9 [4.9] years) and 114 neonates, with 100% of the tests having positive results. The mean (SD) gestational age at administration of the second vaccine dose was 24.9 (3.3) weeks
> Neonatal IgG titers were 2.6 times higher than maternal titers (median [range], 3315.7 [350.1-17 643.5] AU/mL vs 1185.2 [146.6-32 415.1] AU/mL). A positive correlation was demonstrated between maternal and neonatal antibodies (r = 0.92; 95% CI, 0.89-0.94).
> Multivariable analysis revealed that for each week that passed since receipt of the second vaccine dose, maternal and neonatal antibody levels changed by −10.9% (95% CI, −17.2% to −4.2%; P = .002) and −11.7% (95% CI, −19.0 to −3.8%; P = .005), respectively. For each 1-year increase in the mother’s age, maternal and neonatal antibody levels changed by −3.1% (95% CI, −5.3% to −0.9%; P = .007) and −2.7% (95% CI, −5.2% to −0.1%; P = .04), respectively.
In this cohort study, receipt of the BNT162b2 mRNA COVID-19 vaccine during the second trimester of pregnancy was associated with maternal and neonatal humoral responses, as reflected in maternal and neonatal SARS-CoV-2 IgG antibody levels measured after delivery. These findings support COVID-19 vaccination of pregnant individuals during the second trimester to achieve maternal protection and newborn safety during the pandemic. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods
- All pediatric patients diagnosed with MIS-C admitted to pediatric intensive care units or mandatorily reported to the French Public Health Agency.
- 3 sensitivity analyses: adolescents were considered vaccinated at least 14, 28, or 42 days after the first vaccine dose.
Results
> 107 children with MIS-C were hospitalized in France and, among them, 33 (31%) were adolescents eligible for vaccination. Adolescents with MIS-C were a median (IQR) age of 13.7 (12.5-14.9) years, 27 (81%) were male, and 29 (88%) were admitted to a PICU.
> Among MIS-C children, 0 had been fully vaccinated, 7 had received 1 dose with a median (IQR) time between vaccine injection and MIS-C onset of 25 (17-37) days, and 26 had not been vaccinated.
> The HR for MIS-C was 0.09 (95% CI, 0.04-0.21; P < .001) after the first vaccine dose compared with unvaccinated adolescents. Sensitivity analyses showed similar results.
These results suggest that COVID-19 mRNA vaccination was associated with a lower incidence of MIS-C in adolescents, and that 2 doses are warranted for efficient protection. |
- Phase 3 clinical trial to evaluate the efficacy and safety of treatment with molnupiravir started within 5 days after the onset of signs or symptoms in nonhospitalized, unvaccinated adults with mild-to-moderate Covid-19 and at least one risk factor for severe Covid-19 illness.
- 800 mg of molnupiravir or placebo twice daily for 5 days.
Primary efficacy end point: incidence hospitalization or death at day 29.
Results
> 716 patients were assigned to receive molnupiravir and 717 to receive placebo. With the exception of an imbalance in sex, baseline characteristics were similar in the two groups.
> The superiority of molnupiravir was demonstrated at the interim analysis (50% of enrolled population): risk of hospitalization for any cause or death through day 29 was lower with molnupiravir (28 of 385 participants [7.3%]) than with placebo (53 of 377 [14.1%]) (difference, −6.8 percentage points; 95% CI, −11.3 to −2.4; P=0.001).
> In the analysis of all participants who had undergone randomization, the percentage of participants who were hospitalized or died through day 29 was lower in the molnupiravir group than in the placebo group (6.8% [48 of 709] vs. 9.7% [68 of 699]; difference, −3.0 percentage points; 95% CI, −5.9 to −0.1).
> Results of subgroup analyses were largely consistent with these overall results; in some subgroups, such as patients with evidence of previous SARS-CoV-2 infection, those with low baseline viral load, and those with diabetes, the point estimate for the difference favored placebo.
> One death was reported in the molnupiravir group and 9 in the placebo group through day 29. Adverse events were reported in 216 of 710 participants (30.4%) in the molnupiravir group and 231 of 701 (33.0%) in the placebo group.
Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with Covid-19. |
Escape from recognition of SARS-CoV-2 Beta variant spike epitopes but overall preservation of T cell immunity

Riou C., et al. South Africa

gotopaper

T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is incompletely understood.

Aim: to assess neutralizing antibody and T cell responses in 44 South African COVID-19 patients infected either with the Beta variant (dominant from Nov 2020-May 2021) or infected prior to its emergence (first wave, Wuhan strain), to provide an overall measure of immune evasion.

Results

> Robust spike-specific CD4 and CD8 T cell responses were detectable in Beta-infected patients, similar to first wave patients.

> Using peptides spanning the Beta-mutated regions, CD4 T cell responses targeting the wild type peptides were identified in 12/22 first wave patients, all of whom failed to recognize corresponding Beta-mutated peptides. However, responses to mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3/44) mounted CD8 responses that targeted the mutated regions.

> Among the spike epitopes tested, we identified three epitopes containing the D215, L18, or D80 residues that were specifically recognized by CD4 T cells, and their mutated versions were associated with a loss of response.

In spite of loss of recognition of immunogenic CD4 epitopes, CD4 and CD8 T cell responses to Beta are preserved overall. These observations may explain why several vaccines have retain protective activity against severe COVID-19 even with substantial loss of neutralizing antibody activity against Beta.

COVID-19 Vaccination Effectiveness Against Infection or Death in a National U.S. Health Care System

Ioannou, G.N, et al.

USA
gotopaper

Aim: to determine the effectiveness of messenger RNA COVID-19 vaccines in racially and ethnically diverse, elderly populations with high comorbidity burden.

Methods

Target trial emulation study comparing newly vaccinated persons with matched unvaccinated controls. Among persons receiving care in the Veterans Affairs health care system (n = 5 766 638), those who received at least 1 dose of the Moderna or Pfizer–BioNTech COVID-19 vaccine from 11 December 2020 to 25 March 2021 were matched to unvaccinated controls in a 1:1 ratio according to demographic, clinical, and geographic characteristics.

Findings:

> Vaccinated and unvaccinated groups were well matched; both were predominantly male (92.9% vs. 93.4%), had advanced age (mean, 68.7 years in both groups), had diverse racial and ethnic distribution (for example, Black: 17.3% vs. 17.0%, Hispanic: 6.5% vs. 6.1%), and had substantial comorbidity burden.

> Vaccine effectiveness 7 or more days after the second vaccine dose was 69% (95% CI, 67% to 70%) against SARS-CoV-2 infection and 86% (CI, 82% to 89%) against SARS-CoV-2–related death and was similar when follow-up was extended to 31 March versus 30 June.

> Vaccine effectiveness against infection decreased with increasing age and comorbidity burden.

In an elderly, diverse, high-comorbidity population, COVID-19 VE against infection was substantially lower than previously reported, but VE against death was high.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Lancet** 20DEC2021 | Two-dose ChAdOx1 nCoV-19 vaccine protection against COVID-19 hospital admissions and deaths over time: a retrospective, population-based cohort study in Scotland and Brazil | Katikireddi S.V., et al. Brazil / UK [gotopaper](#) | Vaccines - Immunisation | **Aim:** to investigate the association between time since two doses of ChAdOx1 nCoV-19 vaccine and risk of severe COVID-19 outcomes in Scotland (where delta was dominant), with comparative analyses in Brazil (where delta was uncommon).
- Cohorts of adults (aged ≥18 years) who received two doses of ChAdOx1 nCoV-19
- Comparison of rates of severe COVID-19 outcomes (ie, COVID-19 hospital admission or death) across fortnightly periods, relative to 2–3 weeks after the second dose.
- Scotland cohort: from May 19, 2021; Brazil cohort: from Jan 18, 2021. Follow-up in both cohorts was until Oct 25, 2021.

Results
> 1 972 454 adults received two doses of ChAdOx1 nCoV-19 in Scotland and 42 558 839 in Brazil.
> In Scotland, rate ratios (RR) for severe COVID-19 increased to 2·01 (95% CI 1·98–2·04) at 10–11 weeks; 3·01 (2·26–3·99) at 14–15 weeks, and 5·43 (4·00–7·38) at 18–19 weeks after the second dose.
> The pattern of results was similar in Brazil, with RRs of 2·29 (2·01–2·61) at 10–11 weeks, 3·10 (2·63–3·64) at 14–15 weeks, and 4·71 (3·83–5·78) at 18–19 weeks after the second dose.
> In Scotland, vaccine effectiveness decreased from 83·7% (95% CI 79·7–87·0) at 2–3 weeks, to 75·9% (72·9–78·6) at 14–15 weeks, and 63·7% (59·6–67·4) at 18–19 weeks after the second dose.
> In Brazil, vaccine effectiveness decreased from 86·4% (85·4–87·3) at 2–3 weeks, to 59·7% (54·6–64·2) at 14–15 weeks, and 42·2% (32·4–50·6) at 18–19 weeks.

Waning vaccine protection of ChAdOx1 nCoV-19 against COVID-19 hospital admissions and deaths in both Scotland and Brazil was observed, this becoming evident within three months of the second vaccine dose.

> Data for all hospitalizations in England among 0–17 year olds from 1 February 2019 to 31 January 2021
> We examined how sociodemographic factors and comorbidities might be risk factors for pediatric intensive care unit (PICU) admission among hospitalizations due to the following causes: Coronavirus Disease 2019 (COVID-19) and pediatric inflammatory multi-system syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the first pandemic year (2020–2021); hospitalizations due to all other non-traumatic causes in 2020–2021; hospitalizations due to all non-traumatic causes in 2019–2020; hospitalizations due to influenza in 2019–2020

Findings
> Risk of PICU admission and death from COVID-19 or PIMS-TS in CYP was very low. We identified 6,338 hospitalizations with COVID-19, of which 259 were admitted to a PICU and eight identifying which children and young people (CYP) died.
> We identified 712 hospitalizations with PIMS-TS, of which 312 were admitted to a PICU and fewer than five CYP died
> Hospitalizations with COVID-19 and PIMS-TS were more common among males, older CYP, those from socioeconomically deprived neighborhoods and those who were of non-White ethnicity (Black, Asian, Mixed or Other)
> The odds of PICU admission were increased in CYP younger than 1 month old and decreased among 15–17 year olds compared to 1–4 year olds with COVID-19; increased in older CYP and females with PIMS-TS; and increased for Black compared to White ethnicity in patients with COVID-19 and PIMS-TS
> Odds of PICU admission in COVID-19 were increased for CYP with comorbidities and highest for CYP with multiple medical problems.

Increases in odds of PICU admission associated with different comorbidities in COVID-19 showed a similar pattern to other causes of hospitalization examined and, thus, likely reflect background vulnerabilities. These findings identify distinct risk factors associated with PICU admission among CYP with COVID-19 or PIMS-TS that might aid treatment and prevention strategies.
Neutralizing Antibody Response to Pseudotype SARS-CoV-2 Differs between mRNA-1273 and BNT162b2 COVID-19 Vaccines and by History of SARS-CoV-2 Infection

Tyner H. L., et al. USA

Vaccines - Immunisation

Clin Infect Dis. 2020DEC2021

A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS-CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product.

Antibody Response and Variant Cross-Neutralization After SARS-CoV-2 Breakthrough Infection

Bates T.A., et al. USA

Immunology

JAMA 16DEC2021

Aim: to assess antibody levels and variant cross-neutralization after breakthrough infection.

- Fully vaccinated health care workers subsequently diagnosed with SARS-CoV-2 (Jan 31-Aug 18, 2021). Controls were fully vaccinated matched individuals without a breakthrough infection.
- Live SARS-CoV-2 neutralizing serum dilution titers were determined by 50% focus reduction neutralization tests (FRNT50) against isolates of the original SARS-CoV-2 strain (WA1) and variants of concern (Alpha, Beta, Gamma, and Delta).

Results

> 26 participants with breakthrough infections (mean age, 38 years; 20 [77%] women; 24 [92%] were vaccinated with BNT162b2, sampled a median 28 days after PCR date and 213.5 days after final vaccination; 21 [81%] with mild symptoms) were matched to 26 controls (mean age, 39 years; 21 [81%] women; 26 [100%] were vaccinated with BNT162b2, sampled a median 28 days after final vaccination).
> Total RBD–specific Ig increased in participants with breakthrough infection with a median EC50 of 2152 (95% CI, 961-3596) compared to BNT162b2 vaccine GMT = 2,309, 95%CI=1,825-2,919. Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose-2.

This study showed substantial boosting of humoral immunity after breakthrough infection, despite predominantly mild disease, and most notably for IgA. Breakthrough sera demonstrated improved variant cross-neutralization.

Method

> From a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August 2020 to March 2021 for SARS-CoV-2 infection by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population).

Findings

> Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a geometric mean titers (GMTs) of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT = 4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine GMT = 2,309, 95%CI=1,825-2,919. Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose-2.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Immunol. 16DEC2021 | High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells | Chen J.S., et al. USA [gotopaper](#) | Immunology | Loss of T follicular helper (Tfh) cells and germinal centers (GC) has been observed in patients with severe COVID-19. As T cell-B cell interactions and immunoglobulin class switch still occur in these patients, non-canonical pathways of antibody production may be operative during SARS-CoV-2 infection.
> Both Tfh-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection.
> Even though Tfh-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high-affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern.
> By epitope mapping and BCR sequencing, it was found that Tfh cells focused the B cell response and therefore, in the absence of Tfh cells, a more diverse clonal repertoire was maintained.
> These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation. |
| BMJ 16DEC2021 | SARS-CoV-2 vaccination and myocarditis or myopericarditis: population based cohort study | Husby A., et al. Denmark [gotopaper](#) | Vaccines | **Aim:** to investigate the association between SARS-CoV-2 vaccination and myocarditis or myopericarditis.
- **Participants:** 4 931 775 individuals aged ≥12 years, followed from Oct 2020 to Oct 2021.
- **Primary outcome:** myocarditis or myopericarditis, defined as a combination of a hospital diagnosis of myocarditis or pericarditis, increased troponin levels, and a hospital stay lasting more than 24 h.
- **Follow-up time before vaccination was compared with follow-up time 0-28 days from the day of vaccination for both first and second doses.**

Results
> During follow-up, 269 participants developed myocarditis or myopericarditis, of whom 108 (40%) were 12-39 years old and 196 (73%) were male.
> Of 3 482 295 individuals vaccinated with BNT162b2, 48 developed myocarditis or myopericarditis within 28 days from the vaccination date compared with unvaccinated individuals (adjusted hazard ratio 1.34 [95% CI, 0.90 to 2.00]; absolute rate 1.4 per 100 000 vaccinated individuals within 28 days of vaccination [95% CI, 1.0 to 1.8]).
> Adjusted hazard ratios (HR) among female participants only and male participants only were 3.73 (1.82 to 7.65) and 0.82 (0.50 to 1.34), respectively, with corresponding absolute rates of 1.3 (0.8 to 1.9) and 1.5 (1.0 to 2.2) per 100 000 vaccinated individuals within 28 days of vaccination, respectively.
> The adjusted HR among 12-39 year olds was 1.48 (0.74 to 2.98) and the absolute rate was 1.6 (1.0 to 2.6) per 100 000 vaccinated individuals within 28 days of vaccination.
> Among 498 814 individuals vaccinated with mRNA-1273, 21 developed myocarditis or myopericarditis within 28 days from vaccination date (adjusted HR 3.92 [2.30 to 6.68]; absolute rate 4.2 per 100 000 vaccinated individuals within 28 days of vaccination [2.6 to 6.4]).
> Adjusted HR among women only and men only were 6.33 (2.11 to 18.96) and 3.22 (1.75 to 5.93), respectively, with corresponding absolute rates of 2.0 (0.7 to 4.8) and 6.3 (3.6 to 10.2) per 100 000 vaccinated individuals within 28 days of vaccination, respectively.
> The adjusted HR among 12-39 year olds was 5.24 (2.47 to 11.12) and the absolute rate was 5.7 (3.3 to 9.3) per 100 000 vaccinated individuals within 28 days of vaccination.

Vaccination with mRNA-1273 was associated with a significantly increased risk of myocarditis or myopericarditis in the Danish population, primarily driven by an increased risk among individuals aged 12-39 years, while BNT162b2 vaccination was only associated with a significantly increased risk among women. However, the absolute rate of myocarditis or myopericarditis after SARS-CoV-2 mRNA vaccination was low. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods: Thirty-two male and female specific-pathogen-free, research-naive Chinese-origin rhesus macaques (age 3 to 7 years) were distributed—on the basis of age, weight, and sex—into 4 cohorts of 8 animals. Animals were vaccinated with a High-dose (50 µg) SpFN vaccine, given twice 28 days apart.
Findings:
> The vaccine induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1.
> The potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge.
> SpFN vaccine protected against a potent viral challenge, as replicating virus concentrations detected in the upper and lower airways of unvaccinated controls reached a mean of 10x6 to 10x7 copies/ml. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses. |
> Live virus microneutralisation assay of Omicron variant strains HKU691 and HKU344-R346K isolated from patients, as well as Delta and Beta, by sera from 25 BNT162b2 and 25 Coronavac vaccine recipients.
Results:
> The Omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in GISAID database.
> Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the Omicron variant HKU691 and HKU344-R346K, respectively, while none of the Coronavac recipients had detectable neutralizing antibody titer against either Omicron isolate.
> For BNT162b2 recipients, the geometric mean neutralization antibody titers (GMT) of the Omicron variant isolates (5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus (229.4), and the GMT of both Omicron variant isolates were significantly lower than those of the Beta and Delta variants.
> There was no significant difference in the GMT between HKU691 and HKU344-R346K.
Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or Coronavac. The additional R346K mutation did not affect the neutralization susceptibility. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet Respir Med. 16DEC2021 | Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial | Fisher B.A, et al. UK [gotopaper](#) | Therapeutics | **Aim:** to assess the efficacy of namilumab (a granulocyte-macrophage colony stimulating factor inhibitor) and infliximab (a tumour necrosis factor inhibitor) in hospitalised patients with COVID-19, to prioritise agents for phase 3 trials.
Methods: Randomised, multicentre, multi-arm, multistage, parallel-group, open-label, adaptive, phase 2, proof-of-concept trial (CATALYST). Patients aged ≥16 years, admitted to hospital with COVID-19 pneumonia and C-reactive protein (CRP) concentrations of 40 mg/L or greater were recruited at nine hospitals in the UK. 299 patients were screened and 146 were enrolled and randomly assigned to usual care (n=54), namilumab (n=57), or infliximab (n=35). The primary endpoint was improvement in inflammation, measured by CRP concentration over time, analysed using Bayesian multilevel models.
Findings:
> For the primary outcome, 45 patients in the usual care group were compared with 52 in the namilumab group, and 29 in the usual care group were compared with 28 in the infliximab group.
> The probabilities that the interventions were superior to usual care alone in reducing CRP concentration over time were 97% for namilumab and 15% for infliximab; the point estimates for treatment-time interactions were –0·09 (95% CI –0·19 to 0·00) for namilumab and 0·06 (–0·05 to 0·17) for infliximab.
> 134 adverse events occurred in 30 (55%) of 55 patients in the namilumab group compared with 145 in 29 (54%) of 54 in the usual care group.
> 102 adverse events occurred in 20 (69%) of 29 patients in the infliximab group compared with 112 in 17 (50%) of 34 in the usual care group.
> Death occurred in six (11%) patients in the namilumab group compared with ten (19%) in the usual care group, and in four (14%) in the infliximab group compared with five (15%) in the usual care group.
Namilumab, but not infliximab, showed proof-of-concept evidence for reduction in inflammation—as measured by CRP concentration—in hospitalised patients with COVID-19 pneumonia. |
| BMJ 15DEC2021 | Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study | Bruxvoort K. J., et al. USA [gotopaper](#) | Vaccines | To evaluate the effectiveness of the mRNA-1273 (Moderna covid-19 vaccine) vaccine against SARS-CoV-2 variants and assess its effectiveness against the delta variant by time since vaccination
Method:
> Test negative case-control study
> Participants: adult Kaiser Permanente Southern California (KPSC) members with a SARS-CoV-2 positive test sent for whole genome sequencing or a negative test from 1 March 2021 to 27 July 2021.
Findings:
> The study included 8153 cases and their matched controls
> Two dose vaccine effectiveness was 86.7% (95% confidence interval 84.3% to 88.7%) against infection with the delta variant, 98.4% (96.9% to 99.1%) against infection with the alpha variant, 90.4% (73.9% to 96.5%) against mu, 96–98% against other identified variants, and 79.9% (76.9% to 82.5%) against unidentified variants (that is, specimens that failed sequencing).
> Vaccine effectiveness against hospital admission with the delta variant was 97.9% (92.7% to 99.2%)
> Vaccine effectiveness against infection with the delta variant declined from 94.1% (90.5% to 96.3%) 14–60 days after vaccination to 80.0% (70.2% to 86.6%) 151–180 days after vaccination
> Waning was less pronounced for non-delta variants. Vaccine effectiveness against delta infection was lower among people aged ≥65 years (75.2%, 59.6% to 84.8%) than those aged 18–64 years (87.9%, 85.5% to 89.9%). One dose vaccine effectiveness was 77.0% (60.7% to 86.5%) against infection with delta.
Two doses of mRNA-1273 were highly effective against all SARS-CoV-2 variants, especially against hospital admission with covid-19. However, vaccine effectiveness against infection with the delta variant moderately declined with increasing time since vaccination. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 15DEC2021 | Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico | Dunkle, L.M, et al. USA [gotopaper](#) | Vaccines | **Background**
NVX-CoV2373 is a adjuvanted, recombinant spike protein nanoparticle vaccine. Proven clinical efficacy for the prevention of COVID19 in phase 2b–3 trials in the UK and South Africa.

Methods
- Phase 3 randomized, observer-blinded, placebo-controlled trial in the United States and Mexico (first half of 2021)
- Efficacy and safety of NVX-CoV2373 in (≥18 years of age)
- No history of COVID 19

Primary objective vaccine efficacy against RT PCR confirmed cases occurring at least 7 days after the second dose. Vaccine efficacy against moderate-to-severe disease and against different variants was also assessed.

Findings
Of the 29,949 participants who underwent randomization between December 27, 2020, and February 18, 2021, a total of
- 29,582 (median age, 47 years; 12.6% ≥65 years of age) received at least one dose:
 - 19,714 received vaccine and 9868 placebo.
- Over a period of 3 months, 77 cases of Covid-19 were noted
 - 14 among vaccine recipients and 63 among placebo recipients
- Vaccine efficacy, 90.4%; (95% [CI], 82.9 to 94.6; P<0.001).
- Ten moderate and 4 severe cases occurred, all in placebo recipients, yielding vaccine efficacy against moderate-to-severe disease of 100% (95% CI, 87.0 to 100).
- Most sequenced viral genomes (48 of 61, 79%) were variants of concern or interest
- Vaccine efficacy against any variant of concern or interest was 92.6% (95% CI, 83.6 to 96.7).
- Reactogenicity was mostly mild to moderate and transient but was more frequent among NVX-CoV2373 recipients than among placebo recipients and was more frequent after the second dose than after the first dose.

Conclusions
NVX-CoV2373 was safe and effective for the prevention of Covid-19.

| JAMA Netw Open 15DEC2021 | Estimated Effectiveness of COVID-19 Messenger RNA Vaccination Against SARS-CoV-2 Infection Among Older Male Veterans Health Administration Enrollees, January to September 2021 | Young-Xu Y., et al. USA [gotopaper](#) | Vaccines - Immunisation | Aim: to reexamine the estimated effectiveness of the 2 COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) among fully vaccinated male veterans ≥65 years.

- Observation time was divided into 3 periods: pre-Delta (before May 2021), rising Delta (May-June 2021), and high Delta (July-Sept 2021).

Results
- 14 238 male veterans ≥65 years with a positive SARS-CoV-2 test result (cases) and 56 952 controls.
- Estimated pre-Delta mRNA vaccine effectiveness against any SARS-CoV-2 infection was 94.5% (95% CI, 90.7-96.7) in the first month after complete vaccination (Figure; Table) and decreased to 87.9% (95% CI, 85.9-89.5) by month 3.
- During the high-Delta period, the estimated vaccine effectiveness was 62.0% (95% CI, 45.6-73.5) in the first month and decreased to 57.8% (95% CI, 52.5-62.5) by month 3, similar to the pattern from the pre-Delta period.
- The decrease in vaccine effectiveness accelerated after month 4, reaching a low of approximately 20% in months 5 through 7.

During the high-Delta period, estimated vaccine effectiveness against infections was significantly lower than pre-Delta (about 60%) and the decrease in vaccine effectiveness accelerated after month 4 after full vaccination. This effectiveness decreased significantly to around 20% in months 5 through 7.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Results
> SARS-CoV-2 RNAemia was associated with clinical severity of COVID-19 patients.
> Plasmatic ribonuclease P (RNase P) RNAemia at admission was also highly correlated with disease severity (P<0.001) and invasive mechanical ventilation status (P<0.001) but not with pulmonary severity.
> These results indicate a consequent cell lysis process in severe and critical patients but not systematically due to lung cell death.
> Plasmatic RNase P RNA value was also significantly associated with overall survival.
Viral and ubiquitous blood biomarkers monitored by droplet-based digital PCR could be useful for the clinical monitoring and the management of hospitalized COVID-19 patients. |
| Clin Infect Dis. 10DEC2021 | Clinical performance of a standardized SARS-CoV-2 interferon-γ release assay for simple detection of T-cell responses after infection or vaccination | Fernández-González M., et al. Spain [gotopaper](#) | Clinics | **Aim:** to evaluate a standardized interferon-γ (IFN-γ) release assay (IGRA) for detection of T-cell immune response after SARS-CoV-2 infection or vaccination.
- SARS-CoV-2 T-cell response was measured using a specific quantitative IGRA in whole blood and TrimericS-IgG and neutralizing antibodies with validated serological platforms.
Results
> 239 individuals included (152 convalescent, 54 vaccinated and 33 uninfected unvaccinated).
> Overall sensitivity, specificity, positive (PPV) and negative (NPV) predictive values (95% CI) of the IGRA were 81.1% (74.9%-86%), 90.9% (74.5%-97.6%), 98.2% (94.5%-99.5%), and 43.5% (31.8%-55.9%), respectively.
> All vaccinated SARS-CoV-2-naïve subjects had positive IGRA at 3 months.
> In convalescent subjects the magnitude of IFN-γ responses and IGRA accuracy varied according to disease severity and duration of follow-up, with the best performance in patients with severe COVID-19 at 3-month and the worst in those with mild disease at 12-month.
> The greatest contribution of IGRA to serological tests was observed in patients with mild disease and long-term follow-up (incremental difference, 30.4%).
The IGRA assessed was a reliable method of quantifying T-cell response after SARS-COV-2 infection or vaccination. The assay is likely to add clinical value to serology in patients with mild infections. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| JAMA Ophtalmol. 09DEC2021 | Cumulative Mortality and Factors Associated With Outcomes of Mucormycosis After COVID-19 at a Multispecialty Tertiary Care Center in India | Choksi T., et al. India gotopaper | Clinics | **Aim:** to report the cumulative mortality rates at different times in cases with COVID-19–associated rhino-orbitocerebral mucormycosis (CAM) and identify risk factors for CAM-associated mortality.
Results
> 73 consecutive patients with CAM, mean (SD) age of 53.5 (12.5) years, 48 (66%) men.
> CAM developed at a median of 28 (IQR, 15–45; range, 4–90) days after recovery from COVID-19.
> Of the 73 patients with CAM, 26 (36%) died; the cumulative probability of death was 26% (95% CI, 16%–41%) at day 7 and doubled to 53% (95% CI, 39%–69%) at day 21.
> Sinus debridement was performed in 18 of 51 patients (35%), and 5 of 52 (10%) underwent exenteration, whereas intravenous lyophilized amphotericin B was administered to 48 patients (66%).
> Receiving mechanical ventilation in the past was associated with a nearly 9-fold increased risk of death (hazard ratio [HR], 8.98; 95% CI, 2.13–38.65; P = .003), and patients who had visual acuity of light perception or better had a 46% lower risk of death (HR, 0.56; 95% CI, 0.32–0.98; P = .04).
> Intravenous amphotericin B administration was associated with a reduced rate of exenteration (0 vs 5 of 25 [20%]; P < .001). Those who received intravenous amphotericin B had a 69% reduced risk of death (HR, 0.31; 95% CI, 0.06–1.43; P = .13).
The mortality rate after rhino-orbitocerebral mucormycosis is high and a subgroup of patients with severe COVID-19 or presenting with severe orbital disease are more likely to die within 10 days of admission. |
| Science Transl Med. 07DEC2021 | Robust immune responses are observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals | Samanovic M.I., et al. USA gotopaper | Vaccines | **Aim:** to evaluate longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who had experienced COVID-19, compared to 21 adults who did not have prior COVID-19.
Results
> Robust cytotoxic CD8+ T cell responses in both cohorts following the second dose was observed.
> SARS-CoV-2-naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses following each dose of vaccine, whereas SARS-CoV-2-experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but these responses were not further enhanced after the second dose of the vaccine at the time points studied.
> RBD-reactive B cells were 2-fold higher at baseline among SARS-CoV-2-experienced adults compared to SARS-CoV-2-naive adults. Following immunization, increased frequencies of RBD+ B cells were observed in both cohorts, with fold-changes of 2.9 and 4.8 in SARS-CoV-2-naive and SARS-CoV-2-experienced adults, respectively.
These data highlight the relevance of immunological history for understanding vaccine immune responses and may have implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including for the deployment of booster shots. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 08DEC2021 | BNT162b2 Vaccine Booster and Mortality Due to Covid-19 | Arbel R., et al. Israel gotopaper | Vaccines - Immunisation | **Aim:** to gather evidence regarding the effectiveness of the booster in lowering mortality due to Covid-19 over the Delta wave.
- Members of Clalit Health Services ≥50 years and had received two doses of BNT162b2 at least 5 months earlier.
- Mortality due to Covid-19 among participants who received the booster was compared with that among participants who did not receive the booster

Results
> A total of 843,208 participants met the eligibility criteria, of whom 758,118 (90%) received the booster during the 54-day study period.
> Death due to Covid-19 occurred in 65 participants in the booster group (0.16 per 100,000 persons per day) and in 137 participants in the nonbooster group (2.98 per 100,000 persons per day).
> The adjusted hazard ratio for death due to Covid-19 in the booster group, as compared with the nonbooster group, was 0.10 (95% confidence interval, 0.07 to 0.14; P<0.001).

Participants who received a booster at least 5 months after a second dose of BNT162b2 had 90% lower mortality due to Covid-19 than participants who did not receive a booster. |
- July 30-Oct 10, 2021, data on 4,696,865 persons ≥16 years who had received two doses of BNT162b2 at least 5 months earlier.
Primary analysis: comparison of rates of confirmed Covid-19, severe illness, and death among those who had received a booster dose at least 12 days earlier (booster group) with the rates among those who had not received a booster (nonbooster group).
Secondary analysis: comparison of rates in the booster group with the rates among those who had received a booster 3 to 7 days earlier (early postbooster group).

Results
> The rate of confirmed infection was lower in the booster group than in the nonbooster group by a factor of approximately 10 (range across five age groups, 9.0 to 17.2) and was lower in the booster group than in the early postbooster group by a factor of 4.9 to 10.8. The adjusted rate difference ranged from 57.0 to 89.5 infections per 100,000 person-days in the primary analysis and from 34.4 to 38.3 in the secondary analysis.
> The rates of severe illness in the primary and secondary analyses were lower in the booster group by a factor of 17.9 (95% confidence interval [CI], 15.1 to 21.2) and 6.5 (95% CI, 5.1 to 8.2), respectively, among those 60 years of age or older and by a factor of 21.7 (95% CI, 10.6 to 44.2) and 3.7 (95% CI, 1.3 to 10.2) among those 40 to 59 years of age. The adjusted rate difference in the primary and secondary analyses was 5.4 and 1.9 cases of severe illness per 100,000 person-days among those 60 years of age or older and 0.6 and 0.1 among those 40 to 59 years of age.
> Among those 60 years of age or older, mortality was lower by a factor of 14.7 (95% CI, 10.0 to 21.4) in the primary analysis and 4.9 (95% CI, 3.1 to 7.9) in the secondary analysis. The adjusted rate difference in the primary and secondary analyses was 2.1 and 0.8 deaths per 100,000 person-days.

Across the age groups studied, rates of confirmed Covid-19 and severe illness were substantially lower among participants who received a booster dose of the BNT162b2 vaccine than among those who did not. |
Journal and date
Nature 07DEC2021

Title
Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection

Authors and link
Adamo S., et al. Switzerland
gotopaper

Field of expertise
Immunology

Key facts

Aim: to characterize individual SARS-CoV-2-specific CD8+ T cells of COVID-19 patients from acute infection to one year into recovery and find a distinct signature identifying long-lived memory CD8+ T cells.

Methods:
To assess the dynamics of antigen-specific T cells in COVID-19, 175 patients (RT-PCR)-confirmed COVID-19 were recruited and sampled during their symptomatic acute phase, and followed up six months and one year after acute infection. Spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor (TCR) sequencing was performed to characterize CD8+ T Cells

Findings:
> SARS-CoV-2-specific memory CD8+ T cells persisting one year after acute infection express CD45RA, interleukin-7 receptor α (CD127), and T cell factor-1 (TCF1), but they maintain low CCR7, thus resembling CD45RA+ effector-memory T (TEMRA) cells.

> Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, the authors reveal that an interferon signature marks clones giving rise to long-lived cells, whereas prolonged proliferation and mammalian target of rapamycin (mTOR) signaling are associated with clonal disappearance from the blood.

Collectively, these findings demonstrate formation of memory CD8+ T cells to be dependent on a delicate balance between cytokine and TCR signaling during acute infection, which in turn influences outcomes of long-lived, circulating memory T cells in humans.

Journal and date
Nature 07DEC2021

Title
Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2

Authors and link
Hatton C.F., et al. UK
gotopaper

Field of expertise
Immunology

Aim: to explore the interaction between SARS-CoV-2 and innate immunity in the nasal epithelium, notably the interferon (IFN) responses.

- Single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface.

Results
> SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types.

> The host response is dominated by type I and III IFNs and interferon-stimulated gene products.

> This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication.

> When provided prior to infection, recombinant IFNβ or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity.

These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Transl Med. 07DEC2021</td>
<td>Robust immune responses are observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals</td>
<td>Samanovic M. I., et al. USA gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who had experienced COVID-19, compared to 21 adults who did not have prior COVID-19. Findings > Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts following the second dose. > Furthermore, SARS-CoV-2-naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses following each dose of vaccine, whereas SARS-CoV-2-experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but these responses were not further enhanced after the second dose of the vaccine at the time points studied. Together, these data highlight the relevance of immunological history for understanding vaccine immune responses and may have implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including for the deployment of booster shots.</td>
</tr>
<tr>
<td>Lancet Infect Dis. 07DEC2021</td>
<td>Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials</td>
<td>Zeng G., et al. China gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to assess the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose of CoronaVac, in healthy adults aged 18 years and older. Methods: Two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, adults aged 18–59 years in Jiangsu, China. The main outcomes of the study were geometric mean titres (GMTs), geometric mean increases (GMIs), and seropositivity of neutralising antibody to SARS-CoV-2. Findings: > 540 (90%) of 600 participants aged 18–59 years were eligible to receive a third dose, of whom 269 (50%) received the primary third dose 2 months after the second dose and 271 (50%) received a booster dose 8 months after the second dose. > In the 3 μg group, neutralising antibody titres induced by the first two doses declined after 6 months to near or below the seropositive cutoff (GMT of 8) for cohort 1b-14d-8m (n=53; GMT 3-9) and for cohort 2b-28d-8m (n=49; 6-8). > When a booster dose was given 8 months after a second dose, GMTs assessed 14 days later increased to 137·9 for cohort 1b-14d-8m and 143·1 28 days later for cohort 2b-28d-8m. > GMTs moderately increased following a primary third dose, from 21.8 on day 28 after the second dose to 45.8 on day 28 after the third dose in cohort 1a-14d-2m (n=54), and from 38.1 to 49.7 in cohort 2a-28d-2m (n=53). > A third dose given 8 months after the second dose significantly increased neutralising antibody concentrations: GMTs increased from 42.9 on day 28 after the second dose to 158.5 on day 28 following the third dose (n=29). A third dose of CoronaVac in adults administered 8 months after a second dose effectively recalled specific immune responses to SARS-CoV-2, which had declined substantially 6 months after two doses of CoronaVac, resulting in a remarkable increase in the concentration of antibodies and indicating that a two-dose schedule generates good immune memory, and a primary third dose given 2 months after the second dose induced slightly higher antibody titres than the primary two doses.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lancet 06DEC2021</td>
<td>Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial</td>
<td>Stuart A.S.V., et al.</td>
<td>Vaccines</td>
<td>Aim: to study mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer–BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax).</td>
</tr>
<tr>
<td>Lancet 06DEC2021</td>
<td>Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques is coincident with anamnestic antibody response in the lung</td>
<td>Gagne M., et al. USA gotopaper</td>
<td>Vaccines</td>
<td>Aim: to study the impact of durability of immune responses to mRNA-1873 on protection and immune responses in rhesus macaques and assessed immune responses over one year in blood, upper and lower airways.</td>
</tr>
</tbody>
</table>

Results

> April 19-May 14, 2021: 1072 participants enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female).
> In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20.114 ELISA laboratory units [ELU]/ml [95% CI 18.160 to 22.279]) and ChAd/NVX (5597 ELU/ml [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/ml [1718 to 2262]) with a GMR of 10.2 (one-sided 98.75% CI 8.4 to ∞) for ChAd/m1273 and 2.8 (2.2 to ∞) for ChAd/NVX, compared with ChAd/ChAd.
> In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22.978 ELU/ml [95% CI 20.597 to 25.636]) but not for BNT/NVX (8874 ELU/ml [7391 to 10.654]), compared with BNT/BNT (16 929 ELU/ml [15 025 to 19 075]) with a GMR of 1.3 (one-sided 98.75% CI 1.1 to ∞) for BNT/m1273 and 0.5 (0.4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination.
> There were 15 serious adverse events, none considered related to immunisation.

Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd.
Journal and date

<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Infect Dis. 05DEC2021 | Multisystem Inflammatory Syndrome in Children—United States, February 2020–July 2021 | Miller A. D., et al. USA gotopaper | Public health / Epidemiology | Multisystem inflammatory syndrome in children (MIS-C) is a severe hyperinflammatory condition in persons aged <21 years associated with antecedent SARS-CoV-2 infection. Our objective was to describe MIS-C cases reported to CDC's national surveillance since the COVID-19 pandemic began.

Methods

We included patients meeting the MIS-C case definition with onset date from February 19, 2020 through July 31, 2021, using CDC's MIS-C case report form, which collects information on demographics, clinical presentation, and laboratory results.

Findings

> Of 4,901 reported cases, 4,470 met inclusion criteria. Median patient age increased over time (P<0.001), with a median of 9 years (interquartile range, 5–13 years) during the most recent (third) wave.
> Male predominance also increased (62% in third wave, P<0.001). A significant (P<0.001) increase in severe hematologic and gastrointestinal involvement was observed across the study period.
> Frequency of several cardiovascular complications (i.e., cardiac dysfunction, myocarditis, and shock/vasopressor receipt) and renal failure declined (P<0.001)
> Provision of critical care including mechanical ventilation (P<0.001) and extracorporeal membrane oxygenation (ECMO; P=0.046) decreased, as did duration of hospitalization and mortality (each P<0.001).

Over the first 3 pandemic waves of MIS-C in the United States, cardiovascular complications and clinical outcomes including length of hospitalization, receipt of ECMO, and death decreased over time. These data serve as a baseline for monitoring future trends associated with SARS-CoV-2 B.1.617.2 (Delta) or other variants and increased COVID-19 vaccination among children. |

| JAMA 03DEC2021 | Immunogenicity of Extended mRNA SARS-CoV-2 Vaccine Dosing Intervals | Grunau B., et al. Canada gotopaper | Vaccines - Immunisation | This study investigated the immunogenicity of extended mRNA vaccine dosing intervals.

Findings

> For the first investigation, the mean age for the short (dosing interval range, 18–28 days) group was 39 years (43% women); 70% received BNT162b2 and 30%, mRNA-1273; for the medium (range, 42–49 days) group, the mean age was 41 years (47% women); 60% received BNT162b2 and 40%, mRNA-1273. Comparing immunogenicity based on time after the second vaccine dose (matched at mean, 56 days [SD, 26 days]), the viral neutralization geometric mean was 54.6 (GSD, 3.0) for the short group vs 230.8 (GSD, 2.0) for the medium group (P < .001).
> For the second investigation, the mean age was 41 years (60% women), 87% received BNT162b2 and 13%, mRNA-1273, for both the short (range, 21–36 days) and long (range, 102–118 days) groups. Comparing immunogenicity based on time after the first vaccine dose (mean days, 179 [SD, 4.0 days] for the short group and 180 days [SD, 5.7 days] for the long group), the viral neutralization geometric mean was 41.8 (GSD, 2.8) for the short group vs 302.3 (GSD, 2.4) for the long group (P < .001).

Longer mRNA vaccine dosing intervals demonstrated improved immunogenicity, which was consistent when responses were measured based on timing of the first or second dose. A delayed second-dose strategy could yield faster partial protection to a larger proportion of the population when vaccine supplies are limited. These data suggest that extending dosing intervals may be particularly advantageous against the Delta variant. Although antibody neutralization correlates with disease protection, studies should validate whether extending vaccine dosing intervals leads to more sustained vaccine protection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clin Infect Dis. 03DEC2021</td>
<td>Duration of SARS-CoV-2 Natural Immunity and Protection against the Delta Variant: A Retrospective Cohort Study</td>
<td>Kim P., et al. USA gotopaper</td>
<td>Immunology</td>
<td>Aim: to determine whether prior infection protects against reinfection with the Delta variant and to estimate duration of immunity following COVID-19 infection. Methods: Retrospective cohort: 325,157 patients tested for COVID-19 via PCR (09 Mar–31 December 2020 (Delta variant analysis) and 152,656 tested from 09 Mar to 30 Aug 2020 (long-term effectiveness analysis) with subsequent testing through 09 September 2021. The primary outcome was reinfection: a positive PCR test >90 days after initial positive test. Findings: > Among 325,157 patients tested before 31 December 2020, 50,327 (15.5%) tested positive. After 01 July 2021 (Delta dominant period), 40 (0.08%) of the initially positive and 1,494 (0.5%) of the initially negative patients tested positive. > Protection of prior infection against reinfection with Delta was 85.4% (95% CI, 80.0–89.3). > For the long-term effectiveness analysis, among 152,656 patients tested before 30 August 2020, 11,186 (7.3%) tested positive. At least 90 days, 81 (0.7%) of the initially positive patients and 7,167 (5.1%) of the initially negative patients tested positive. > Overall protection of previous infection was 85.7% (95% CI, 82.2–88.5) and lasted up to 13 months. Patients over age 65 had slightly lower protection. SARS-CoV-2 infection is highly protective against reinfection with the Delta variant. Immunity from prior infection lasts for at least 13 months.</td>
</tr>
<tr>
<td>Science 02DEC2021</td>
<td>Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants</td>
<td>Reynolds C.J., et al. UK gotopaper</td>
<td>Immunology</td>
<td>Aim: to study the impact of initial SARS-CoV-2 infecting strain on downstream immunity to heterologous variants of concern (VOC) through a longitudinal healthcare worker cohort. Results: > After three antigen exposures (infection+two vaccine doses), S1 antibody, memory B cells and heterologous neutralization of B*1.351, P.1 and B.1.617.2 plateaued, while B.1.1.7 neutralization and spike T cell responses increased. > Serology using Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. > Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. > Neutralization potency fell differentially depending on targeted VOCs over 5-months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.</td>
</tr>
<tr>
<td>Nature Immunol. 01DEC2021</td>
<td>An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease</td>
<td>Peng Y., et al. UK gotopaper</td>
<td>Immunology</td>
<td>Aim: to present an in-depth analysis to explore correlations across NP105–113-B07:02-specific T cell responses, TCR repertoires and disease severity. Methods: Analysis of NP105–113-B07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). Findings: > The authors found strong association of NP105–113-B07:02-specific CD8+ T cell responses with mild disease. > A beneficial association of NP105–113-B07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function was observed. > Broad immune memory pools were narrowed postinfection but NP105–113-B07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. NP105–113-B07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.</td>
</tr>
</tbody>
</table>
4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication

Lieber C. M., et al. USA

gotopaper

Field of expertise: Therapeutics

Key facts

Description of 4'-fluorouridine (4'-FIU, EIDD-2749), a ribonucleoside analog that inhibits respiratory syncytial virus (RSV), related RNA viruses, and SARS-CoV-2 with high selectivity index in cells and human airway epithelia organoids.

Findings

> Polymerase inhibition within in vitro RdRP assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation.

>Once-daily oral treatment was highly efficacious at 5 mg/kg in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants-of-concern, initiated 24 or 12 h after infection, respectively.

These properties define 4'-FIU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.

Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial

Munro A.P.S., et al. UK

gotopaper

Field of expertise: Vaccines

Aim: to investigate the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford–AstraZeneca, ChAd) or BNT162b2 (Pfizer–BioNTech; BNT).

Methods

- COV-BOOST is a multicentre, randomised, controlled, phase 2 trial on participants ≥30 years, at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary immunisation course, with no history of SARS-CoV-2 infection.

- Participants were divided into three groups:

 - Group A received NVX-CoV2373 (Novavax; NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY) control (1:1:1:1).

 - Group B received BNT, VLA2001 (Valneva; VLA), a half dose of VLA, Ad26.COV2.S (Janssen; Ad26) or MenACWY (1:1:1:1).

 - Group C received mRNA1273 (Moderna; m1273), CVnCov (CureVac; CvN), a half dose of BNT, or MenACWY (1:1:1:1).

Coprimary outcomes: safety and reactogenicity and immunogenicity of anti-spike IgG.

Results

> June 1–30, 2021: 2878 participants received COVID-19 vaccine or control.

- ChAd/ChAd-primed participants: 53 years (IQR 44–61) in the younger age group and 76 years (73–78) in the older age group; 46-7% were female and 95.4% were White.

- BNT/BNT-primed participants: median ages were 51 years (41–59) in the younger age group and 78 years (75–82) in the older age group; 53.6% participants were female and 1321 91.9% were White.

> Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT.

> For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1.8 (99% CI 1.5–2.3) in the half VLA group to 32.3 (24.8–42.0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1.1 (95% CI 0.7–1.6) for ChAd to 3.6 (2.4–5.5) for m1273.

> For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1.3 (99% CI 1.0–1.5) in the half VLA group to 11.5 (9.4–14.1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1.0 (95% CI 0.7–1.6) for half VLA to 4.7 (3.1–7.1) for m1273.

> The results were similar between those aged 30–69 years and those aged 70 years and older.

> Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30–69 years than those aged 70 years or older.

> Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group, two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273.

All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Immunol. 01DEC2021 | Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain | Nabel K.G., et al. USA [gotopaper](#) | Immunology | **Aim:** to investigate the structural plasticity of the SARS-CoV-2 spike protein RBD and its capacity to evade neutralizing antibodies.
Methods: Monoclonal antibodies from the blood of a COVID-19 convalescent individual using single B cell sorting with prefusion stabilized SARS-CoV spike protein ectodomain as bait and using established protocols for all tested variants but show that the RBD have found an antibody that binds the RBD core to K.G., group and 84 (33%) of beyond other immunomodulators used to treat COVID-19 patients with COVID-19 participants who received at least one dose of study drug under the documented supervision of the principal investigator or sub-investigator.
Findings: > The SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients.
> The authors have found an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization.
> These findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans. |
| Lancet Respir Med. 01DEC2021 | Lenzilumab in hospitalised patients with COVID-19 pneumonia (LIVE-AIR): a phase 3, randomised, placebo-controlled trial | Temsgen Z., et al. USA [gotopaper](#) | Therapeutics | **Granulocyte-macrophage colony-stimulating factor (GM-CSF) is among cytokines that contribute to the inflammatory processes. Lenzilumab, a GM-CSF neutralising monoclonal antibody, was investigated in the LIVE-AIR trial to assess its efficacy and safety in treating COVID-19 beyond available treatments.**
Methods: > In LIVE-AIR, a phase 3, randomised, double-blind, placebo-controlled trial, hospitalised adult patients with COVID-19 pneumonia not requiring invasive mechanical ventilation were recruited from 29 sites in the USA and Brazil and were randomly assigned (1:1) to receive three intravenous doses of lenzilumab (600 mg per dose) or placebo delivered 8 h apart.
> The primary endpoint was survival without invasive mechanical ventilation to day 28 in the modified intention-to-treat population (mITT), comprising all randomised participants who received at least one dose of study drug under the documented supervision of the principal investigator or sub-investigator.
Findings: > Patients were enrolled from May 5, 2020, until Jan 27, 2021. 528 patients were screened, of whom 520 were randomly assigned and included in the intention-to-treat population. 479 of these patients (n=236, lenzilumab; n=243, placebo) were included in the mITT analysis for the primary outcome.
> 311 (65%) participants were male, mean age was 61 (SD 14) years at baseline, and median C-reactive protein concentration was 79 (IQR 41–137) mg/L.
> Steroids were administered to 449 (94%) patients and remdesivir to 347 (72%) patients; 331 (69%) patients received both treatments.
> Survival without invasive mechanical ventilation to day 28 was achieved in 198 (84%; 95% CI 79–89) participants in the lenzilumab group and in 190 (78%; 72–83) patients in the placebo group, and the likelihood of survival was greater with lenzilumab than placebo (hazard ratio 1.54; 95% CI 1.02–2.32; p=0.040).
> 68 (27%) of 255 patients in the lenzilumab group and 84 (33%) of 257 patients in the placebo group experienced at least one adverse event that was at least grade 3 in severity based on CTCAE criteria. The most common treatment-emergent adverse events of grade 3 or higher were related to respiratory disorders (26%) and cardiac disorders (6%) and none led to death.
> Lenzilumab significantly improved survival without invasive mechanical ventilation in hospitalised patients with COVID-19, with a safety profile similar to that of placebo. The added value of lenzilumab beyond other immunomodulators used to treat COVID-19 alongside steroids remains unknown. |
Comparative Effectiveness of BNT162b2 and mRNA-1273 Vaccines in U.S. Veterans

Aim: To evaluate the comparative effectiveness of the two mRNA vaccines BNT162b2 and mRNA-1273 for a range of outcomes across diverse populations is unknown.

Methods
- Electronic health records of U.S. veterans who received a first dose of the BNT162b2 or mRNA-1273 vaccine (Jan 4-May 14, 2021 – predominance of Alpha variant).
- To assess the influence of the B.1.617.2 (delta) variant, we emulated a second target trial that involved veterans vaccinated between July 1 and Sept 20, 2021.

Results
- Each vaccine group included 219,842 persons.
- Over 24 weeks of follow-up in a period marked by alpha-variant predominance, the estimated risk of documented infection was 5.75 events per 1000 persons (95% CI, 5.39 to 6.23) in the BNT162b2 group and 4.52 events per 1000 persons (95% CI, 4.17 to 4.84) in the mRNA-1273 group.
- The excess number of events per 1000 persons for BNT162b2 as compared with mRNA-1273 was 1.23 (95% CI, 0.72 to 1.81) for documented infection, 0.44 (95% CI, 0.25 to 0.70) for symptomatic Covid-19, 0.55 (95% CI, 0.36 to 0.83) for hospitalization for Covid-19, 0.10 (95% CI, 0.00 to 0.26) for ICU admission for Covid-19, and 0.02 (95% CI, −0.06 to 0.12) for death from Covid-19.
- The corresponding excess risk (BNT162b2 vs. mRNA-1273) of documented infection over 12 weeks of follow-up in a period marked by delta-variant predominance was 6.54 events per 1000 persons (95% CI, −2.58 to 11.82).

The 24-week risk of Covid-19 outcomes was low after vaccination with mRNA-1273 or BNT162b2, although risks were lower with mRNA-1273 than with BNT162b2. This pattern was consistent across periods marked by alpha- and delta-variant predominance.

Viral Dynamics of SARS-CoV-2 Variants in Vaccinated and Unvaccinated Persons

Aim: To assess viral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated people.

Methods
- Analysis of a prospective, longitudinal set of 19,941 SARS-CoV-2 viral samples obtained from 173 participants, November 28, 2020, and August 11, 2021
- Participants: infection with alpha (36), infection with delta (36), infection with a variant that was not of current interest or concern (41), vaccinated individuals (37), unvaccinated individuals (136)

Results
- No meaningful difference in the mean peak viral load was found, proliferation duration, clearance duration, or duration of acute infection of either the alpha or the delta variant as compared with variants not of interest or concern.
- A lower peak Ct was slightly more frequent in infections with the delta variant than in those with the alpha variant or variants not of interest or concern: 13.0% of the posterior delta trajectories had a Ct<15, vs 6.9% for the alpha variant and 10.2% for variants not of interest or concern. It is unclear whether this finding reflects a limiting factor of the study.
- Breakthrough infections in vaccine recipients were characterized by a faster clearance time than that among unvaccinated participants (mean of 5.5 days (95% CI, 4.6 to 6.5) and 7.5 days (95% CI, 6.8 to 8.2), respectively). The shorter clearance time led to a shorter overall duration of infection among vaccine recipients.

This study provides data on acute SARS-CoV-2 viral dynamics for some variants of concern among vaccinated and unvaccinated persons.

Journal and date	**Title**	**Authors and link**	**Field of expertise**	**Key facts**
NEJM 01DEC2021 | Comparative Effectiveness of BNT162b2 and mRNA-1273 Vaccines in U.S. Veterans | Dickerman B.A., et al. | Vaccines - Immunisation | **Aim:** to evaluate the comparative effectiveness of the two mRNA vaccines BNT162b2 and mRNA-1273 for a range of outcomes across diverse populations is unknown. **Methods** - Electronic health records of U.S. veterans who received a first dose of the BNT162b2 or mRNA-1273 vaccine (Jan 4-May 14, 2021 – predominance of Alpha variant). - Outcomes: documented SARS-CoV-2 infection, symptomatic Covid-19, hospitalization for Covid-19, admission to ICU for Covid-19, and death from Covid-19. - To assess the influence of the B.1.617.2 (delta) variant, we emulated a second target trial that involved veterans vaccinated between July 1 and Sept 20, 2021. **Results** - Each vaccine group included 219,842 persons. - Over 24 weeks of follow-up in a period marked by alpha-variant predominance, the estimated risk of documented infection was 5.75 events per 1000 persons (95% CI, 5.39 to 6.23) in the BNT162b2 group and 4.52 events per 1000 persons (95% CI, 4.17 to 4.84) in the mRNA-1273 group. - The excess number of events per 1000 persons for BNT162b2 as compared with mRNA-1273 was 1.23 (95% CI, 0.72 to 1.81) for documented infection, 0.44 (95% CI, 0.25 to 0.70) for symptomatic Covid-19, 0.55 (95% CI, 0.36 to 0.83) for hospitalization for Covid-19, 0.10 (95% CI, 0.00 to 0.26) for ICU admission for Covid-19, and 0.02 (95% CI, −0.06 to 0.12) for death from Covid-19. - The corresponding excess risk (BNT162b2 vs. mRNA-1273) of documented infection over 12 weeks of follow-up in a period marked by delta-variant predominance was 6.54 events per 1000 persons (95% CI, −2.58 to 11.82). The 24-week risk of Covid-19 outcomes was low after vaccination with mRNA-1273 or BNT162b2, although risks were lower with mRNA-1273 than with BNT162b2. This pattern was consistent across periods marked by alpha- and delta-variant predominance. |

Journal and date	**Title**	**Authors and link**	**Field of expertise**	**Key facts**
NEJM 01DEC2021 | Viral Dynamics of SARS-CoV-2 Variants in Vaccinated and Unvaccinated Persons | Kissler S.M., et al. | Virology | **Aim:** To assess viral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated people. **Methods** - Analysis of a prospective, longitudinal set of 19,941 SARS-CoV-2 viral samples obtained from 173 participants, November 28, 2020, and August 11, 2021 - Participants: infection with alpha (36), infection with delta (36), infection with a variant that was not of current interest or concern (41), vaccinated individuals (37), unvaccinated individuals (136) **Results** - No meaningful difference in the mean peak viral load was found, proliferation duration, clearance duration, or duration of acute infection of either the alpha or the delta variant as compared with variants not of interest or concern. - No meaningful difference in the mean peak viral load or proliferation duration was found between vaccinated and unvaccinated participants. - A lower peak Ct was slightly more frequent in infections with the delta variant than in those with the alpha variant or variants not of interest or concern: 13.0% of the posterior delta trajectories had a Ct<15, vs 6.9% for the alpha variant and 10.2% for variants not of interest or concern. It is unclear whether this finding reflects a limiting factor of the study. - Breakthrough infections in vaccine recipients were characterized by a faster clearance time than that among unvaccinated participants (mean of 5.5 days (95% CI, 4.6 to 6.5) and 7.5 days (95% CI, 6.8 to 8.2), respectively). The shorter clearance time led to a shorter overall duration of infection among vaccine recipients. This study provides data on acute SARS-CoV-2 viral dynamics for some variants of concern among vaccinated and unvaccinated persons. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 01DEC2021 | Covid-19 Vaccine Effectiveness in New York State | Rosenberg E.S., et al. USA | Vaccines - Immunisation | **Aim:** to assess whether declines in effectiveness are due to waning immunity, the B.1.617.2 (delta) variant of the SARS-CoV-2, or other causes is unknown.
- Data for 8,690,825 adults in New York State to assess the effectiveness of the BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines against laboratory-confirmed Covid-19 and hospitalization with Covid-19 (i.e., Covid-19 diagnosed at or after admission).
- Vaccine effectiveness was assessed against Covid-19 from May 1 to September 3, 2021, and against hospitalization with Covid-19 from May 1 to August 31, 2021.
Results
> There were 150,865 cases of Covid-19 and 14,477 hospitalizations with Covid-19.
> During the week of May 1, 2021, when the delta variant made up 1.8% of the circulating variants, the median vaccine effectiveness against Covid-19 was 91.3% (range, 84.1 to 97.0) for BNT162b2, 96.9% (range, 93.7 to 98.0) for mRNA-1273, and 86.6% (range, 77.8 to 89.7) for Ad26.COV2.S.
> Subsequently, effectiveness declined contemporaneously in all cohorts, from a median of 93.4% (range, 77.8 to 98.0) during the week of May 1 to a nadir of 73.5% (range, 13.8 to 90.0) around July 10, when the prevalence of the delta variant was 85.3%.
> By the week of August 28, when the prevalence of the delta variant was 99.6%, the effectiveness was 74.2% (range, 63.4 to 86.8).
> Effectiveness against hospitalization with Covid-19 among adults 18 to 64 years of age remained almost exclusively greater than 86%, with no apparent time trend.
> Effectiveness declined from May through August among persons 65 years of age or older who had received BNT162b2 (from 94.8 to 88.6%) or mRNA-1273 (from 97.1 to 93.7%). The effectiveness of Ad26.COV2.S was lower than that of the other vaccines, with no trend observed over time (range, 80.0 to 90.6%).
The effectiveness of the three vaccines against Covid-19 declined after the delta variant became predominant. The effectiveness against hospitalization remained high, with modest declines limited to BNT162b2 and mRNA-1273 recipients 65 years of age or older. |
| Nature Immunol. 30NOV2021 | BNT162b2 vaccine induces divergent B cell responses to SARS-CoV-2 S1 and S2 | Brewer R. C., et al. Germany / USA | Vaccines - Immunisation | **Aim:** to investigate the B cell response to the BNT162b2 vaccine by integrating B cell repertoire analysis with single-cell transcriptomics pre- and post-vaccination.
Methods:
Nine healthy individuals were enrolled in the study. All individuals had undergone routine PCR with reverse transcription (RT–PCR) testing for SARS-CoV-2 infection before study. A detailed characterization of the B cell response to the BNT162b2 mRNA vaccine at a single-cell level was performed.
Findings:
> The first vaccine dose elicits a recall response of IgA+ plasmablasts targeting the S subunit S2.
> Three weeks after the first dose, an influx of minimally mutated IgG+ memory B cells that targeted the receptor binding domain on the S subunit S1 and likely developed from the naive B cell pool was observed.
> This response was strongly boosted by the second dose and delivers potently neutralizing antibodies against SARS-CoV-2 and several of its variants.
This study provides a detailed characterization of the blood B cell response to the BNT162b2 mRNA vaccine and emphasize the importance of the second dose in inducing generation of RBD-specific antibodies that contribute to neutralization of SARS-CoV-2 variants. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods: The immunogenicity of mucosally applied viral vector vaccines as a single shot vaccine or as a booster after an intramuscular plasmid DNA prime immunization was evaluated.
Findings:
> Intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice.
> In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced.
> The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells.
> Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. **These data suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.** |
Methods: A national, multicentre, observational cohort study in 18 French intensive care units (ICUs) was performed. Adult patients (aged ≥18 years) were retrospectively and prospectively enrolled with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge.
Results:
> Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA.
> According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39–3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12–6·56], p=0·027), and long duration of mechanical ventilation (>14 days; OR 2·16 [1·14–4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (<1%) had invasive fusariosis.
> Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26–2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53–3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03–2·03], p=0·033).
> At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0–72·8) versus 32·1% (27·7–36·7; p<0·0001).
This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet 30NOV21</td>
<td>Risk of COVID-19 hospital admission among children aged 5–17 years with asthma in Scotland: a national incident cohort study</td>
<td>Shi T., et al. UK gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Analysis to identify which children with asthma were at increased risk of serious COVID-19 outcomes. Findings > Between March 1, 2020, and July 27, 2021, 752,867 children were included in the EAVE II dataset, 63,463 (8.4%) of whom had clinician-diagnosed and -recorded asthma of these, 4339 (6.9%) had RT-PCR confirmed SARS-CoV-2 infection. n those with confirmed infection, 67 (1.5%) were admitted to hospital with COVID-19. > Among the 689,404 children without asthma, 40,231 (5.8%) had confirmed SARS-CoV-2 infections, of whom 382 (0.9%) were admitted to hospital with COVID-19 > The rate of COVID-19 hospital admission was higher in children with poorly controlled asthma than in those with well controlled asthma or without asthma - When using previous hospital admission for asthma as the marker of uncontrolled asthma, the adjusted HR was 6.40 (95% CI 3.27–12.53) for those with poorly controlled asthma and 1.36 (1.02–1.80) for those with well controlled asthma, compared with those with no asthma - When using oral corticosteroid prescriptions as the marker of uncontrolled asthma, the adjusted HR was 3.38 (1.84–6.21) for those with three or more prescribed courses of corticosteroids, 3.53 (1.87–6.67) for those with two prescribed courses of corticosteroids, 1.52 (0.90–2.57) for those with one prescribed course of corticosteroids, and 1.34 (0.98–1.82) for those with no prescribed course, compared with those with no asthma. School-aged children with asthma with previous recent hospital admission or two or more courses of oral corticosteroids are at markedly increased risk of COVID-19 hospital admission and should be considered a priority for vaccinations. This would translate into 9124 children across Scotland and an estimated 109,448 children across the UK.</td>
</tr>
<tr>
<td>Lancet 26NOV2021</td>
<td>Prevention of SARS-CoV-2 transmission during a large, live, indoor gathering (SPRING): a non-inferiority, randomised, controlled trial</td>
<td>Delaugerre C., et al. France gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>To assess, under controlled conditions, whether infection rates among attendees at a large, indoor gathering event would be similar to those in non-attendees, given implementation of a comprehensive prevention strategy including antigen-screening within 3 days, medical mask wearing, and optimised ventilation. Methods > The non-inferiority, prospective, open-label, randomised, controlled SPRING trial was done on attendees at a live indoor concert held in the Accor Arena on May 29, 2021 in Paris, France. > Participants, aged 18–45 years, recruited via a dedicated website, had no comorbidities, COVID-19 symptoms, or recent case contact, and had a negative rapid antigen diagnostic test within 3 days before the concert > The primary outcome measure was the number of patients who were SARS-CoV-2-positive by RT-PCR test on self-collected saliva 7 days post-gathering in the per-protocol population (non-inferiority margin <0.35%). Findings > Between May 11 and 25, 2021, 18,845 individuals registered on the dedicated website, and 10,953 were randomly selected for a pre-enrolment on-site visit. > Among 6968 who kept the appointment and were screened, 6678 participants were randomly assigned (4451 were assigned to be attendees and 2227 to be non-attendees; median age 28 years; 59% women); 88% (3917) of attendees and 87% (1947) of non-attendees complied with follow-up requirements. > The day 7 RT-PCR was positive for eight of the 3917 attendees (observed incidence, 0.20%; 95% CI 0.09–0.40) and three of the 1947 non-attendees (0.15%; 0.03–0.45; absolute difference, 95% CI 0.0–26% to 0.28%), findings that met the non-inferiority criterion for the primary endpoint. Participation in a large, indoor, live gathering without physical distancing was not associated with increased SARS-CoV-2 transmission risk, provided a comprehensive preventive intervention was implemented</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation**
Nature 25NOV2021 | Saito A., et al. Japan [gotopaper](#) | Virology | **Aim:** to show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters.
> The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates spike protein cleavage and enhances viral fusogenicity.
> P681R-bearing virus exhibits higher pathogenicity than its parental virus.
These data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity. |
| **Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India:**
Lancet Infect Dis. 25NOV2021 | Thiruvengadam R., et al. India [gotopaper](#) | Vaccines - Immunisation | **Aim:** to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination.
- **Primary outcome:** effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection.
- **Secondary outcomes:** effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals.
Findings
> Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3.6%) were fully vaccinated compared with 168 (8.5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28–0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5–72·1).
> 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994 controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42–0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6–57·7).
> One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01–0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9–99·0).
> The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1–94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06–0·54]).
> Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8–394·4]), beta (B.1.351; 97·6 [61·2–155·8]), kappe (B.1.617.1; 112·8 [72·7–175·0]), and delta (88·4 [61·2–127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9–953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2.
The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. |
SARS-CoV-2 transmission across age groups in France and implications for control

Tran Kiem, C., et al.

Field of expertise: Public Health / Epidemiology

Nature Commun. 25NOV2021

Aim: To build a modeling framework to reconstruct the complex patterns of spread of SARS-CoV-2 across age groups along with the dynamics of infections and hospitalizations, from the detailed analysis of age-stratified case (N = 368,906) and hospitalization (N = 16,548) data from all 13 regions of Metropolitan France, between 15 June and 28 September 2020.

Results

> In the Auvergne-Rhône-Alpes region, the proportion of positive tests among symptomatic individuals aged 20–29 yr increased from 3.2% to 12.9% between 27 July 2020 and 17 August 2020. This increase was quickly followed by a rise in positivity rates and hospital admissions in other age groups.

> Daily effective contacts as model predicted daily contacts in the estimated mixing matrix rescaled so that the number of daily effective contacts in the 20–29 years old (y.o.) is 7.7, as observed in the SocialCov survey.

> In Auvergne-Rhône-Alpes, the effective reproduction number Reff (i.e., the average number of individuals infected by an index case accounting for the build-up of immunity) increased from 1.3 to 1.5 during the build-up of the autumn wave. Even though this corresponds to a 50% reduction in the transmission rate compared to a scenario with no control measures, this was insufficient to avoid a surge in hospitalizations and eventually the implementation of a national lockdown on 30 October 2020.

> In 10 out of 12 regions of Metropolitan France, we reach similar conclusions that in situations characterized by Reff close to 1 where the epidemic may remain manageable, it is beneficial to reduce effective contacts of those that contribute the most to transmission; while for larger values of Reff that are likely to lead to a major crisis in hospitals, it is optimal to target those with the highest risk of severe outcome.

While shielding older individuals can reduce COVID-19 mortality and morbidity, the intervention would not allow an important relaxation of control measures for other age groups in the absence of vaccines due to the porosity of SARS-CoV-2 transmission across age groups. Pandemic control requires an effort from all age groups.

Nationwide effectiveness of five SARS-CoV-2 vaccines in Hungary - The HUN-VE study

Vokó Z., et al.

Field of expertise: Vaccines - Immunisation

Clin Microbiol Infect. 24NOV2021

Aim: Observational study (HUN-VE: Hungarian Vaccine Effectiveness) to estimate effectiveness against SARS-CoV-2 infection and Covid-19 related mortality of 5 different vaccines used in 3.7 million individuals in Hungary.

Results

> Between 22 January 2021 and 10 June 2021, 3,740,066 Hungarian individuals received two doses of the BNT162b2 (Pfizer-BioNTech), HB02 (Sinopharm), Gam-COVID-Vac (Sputnik-V), AZD1222 (AstraZeneca), or mRNA-1273 (Moderna) vaccines.

> Incidence rates of SARS-CoV2 infection and Covid-19 related death were 1.73–9.3/100,000 person-days and 0.04–0.65/100,000 person-days in the fully vaccinated population, respectively.

> Estimated adjusted effectiveness varied between 88.7% (95% CI: 86.3–90.2%) and 88.7% (95% CI: 86.6–90.4%) against SARS-CoV-2 infection, and between 87.8% (95% CI: 86.1–98.6%) and 97.7% (95% CI: 95.1–99.1%) against Covid-19 related death, with 100% effectiveness in individuals aged 16–44 years for all vaccines.

> All details are thoroughly presented in the paper.

Our observational study demonstrated the high or very high effectiveness of five different vaccines in the prevention SARS-CoV-2 infection and Covid-19 related death.
BMJ 24NOV2021

Title: Effect of PEP flute self-care versus usual care in early covid-19: non-drug, open label, randomised controlled trial in a Danish community setting

Aim: To determine whether positive expiratory pressure (PEP) by PEP flute self-care is effective in reducing respiratory symptoms among community dwelling adults with SARS-CoV-2 infection and early stage covid-19.

Methods: Non-drug, open label, randomised controlled trial, performed at the Capital Region and Region Zealand in Denmark from 6 October 2020 to 26 February 2021.

Results: > 378 participants were assigned to the PEP flute self-care intervention (n=190) or usual care only (n=188). In the PEP self-care group, the median number of days with PEP flute use was 21 days (interquartile range 13-25).

> For the intention-to-treat population, a group difference was observed in changes from baseline in CAT scores of −1.2 points (95% confidence interval −2.1 to −0.2; P=0.017) in favour of the PEP flute self-care group.

> At day 30, the PEP flute self-care group also reported less chest tightness, less dyspnoea, more vigour, and higher level of daily activities, but these differences were small, and no consistent effects were seen on the secondary outcomes.

> No serious adverse events were reported.

In community dwelling adults with early covid-19, PEP flute self-care had a significant, yet marginal and uncertain clinical effect on respiratory symptom severity, as measured by CAT scores.

JAMA 24NOV2021

Title: Assessment of 4 Doses of SARS-CoV-2 Messenger RNA–Based Vaccine in Recipients of a Solid Organ Transplant

Aim: to assess whether a fourth dose of the SARS-CoV-2 vaccine is associated with improved anti-SARS-CoV-2 antibody concentrations in solid organ transplant recipients in France.

Methods: Case series study conducted from July 1, 2021, to August 5, 2021. A fourth dose of the messenger RNA-based BNT162b2 vaccine (Pfizer-BioNTech) was given to the 37 solid organ transplant recipients, including 5 (13.5%) who had a weak response to the previous 3 doses (antibody concentration <14 binding antibody units [BAU]/mL) and 31 (83.8%) who had no response to the 3 previous doses.

Findings: > Of 37 patients included, 20 (54.0%) were male, with a mean (SEM) age of 60 (14) years. Anti-SARS-CoV-2 antibodies were detected in 5 of 37 patients (13.5%) before dose 4 and in 18 of 37 patients (48.6%) 1 month later (P = .002).

> Among the 31 patients who were seronegative before dose 4, 13 (41.9%) became seropositive (median antibody concentration, 9.5 BAU/mL at 4 weeks after dose 4; 6 patients (19.4%) had antibody concentrations greater than 14 BAU/mL, and 2 (6.5%) had antibody concentrations greater than 140 BAU/mL.

> At 4 weeks after dose 4, antibody concentrations were significantly higher among patients who had detectable antibodies before dose 4 than among those who had no response. However, Nab titers at 4 weeks after dose 4 did not differ between responders and nonresponders to 3 doses.

> Overall, at 4 weeks after dose 4, 32 of 37 patients (86.5%) had antibody concentrations less than 140 BAU/mL (a threshold providing 12.4% protection among health care workers) and all 37 patients (100%) had Nab titers less than 64 IU/mL.

> At 4 weeks after D4, the number of SARS-CoV-2–reactive IFN-γ–producing cells was 61.25 spot-forming units (SFUs) per 106 peripheral blood mononuclear cells (PBMCs), with 167.5 SFUs per 106 PBMCs among seropositive patients and 55 SFU per 106 PBMC among seronegative patients.

A fourth dose of SARS-CoV-2 vaccine was associated with slightly improved humoral response among patients with a weak response after 3 doses and with no improvement among those with no response after 3 doses.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| BMJ 25NOV2021 | Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection: test negative design study | Israel A., et al. [Israel](#) | Vaccines - Immunisation | **Aim:** to determine whether time elapsed since the second injection of the Pfizer-BioNTech BNT162b2 mRNA vaccine was significantly associated with the risk of covid-19 infection after vaccination in people who received two vaccine injections.
Main outcome measures: Positive result for the RT-PCR test. Individuals who tested positive for SARS-CoV-2 and controls were matched for week of testing, age category, and demographic group.
Results
> 83,057 adults received an RT-PCR test for SARS-CoV-2 during the study period (May-Sept 2021) and 9.6% had a positive result.
> Time elapsed since the vaccine injection was significantly longer in individuals who tested positive (P<0.001).
> Adjusted odds ratio for infection at time intervals >90 days since vaccination were significantly increased compared with the reference of <90 days: 2.37 (95% confidence interval 1.67 to 3.36) for 90-119 days, 2.66 (1.94 to 3.66) for 120-149 days, 2.82 (2.07 to 3.84) for 150-179 days, and 2.82 (2.07 to 3.85) for ≥180 days (P<0.001 for each 30 day interval).
In this large population of adults tested for SARS-CoV-2 by RT-PCR after two doses of mRNA BNT162b2 vaccine, a gradual increase in the risk of infection was seen for individuals who received their second vaccine dose after at least 90 days. |
| NEJM 24NOV2021 | Severity of SARS-CoV-2 Reinfections as Compared with Primary Infections | Abu-Raddad L., et al. [Qatar](#) | Vaccines - Immunisation | **Aim:** to investigate the risk of severe disease (leading to acute care hospitalization), critical disease (leading to hospitalization in an intensive care unit [ICU]), and fatal disease caused by reinfections as compared with primary infections
- National cohort of 353,326 persons with PCR–confirmed infection between February 28, 2020, and April 28, 2021. Reinfected persons were matched 1:5 with those with primary infection and stratified.
- Reinfection: PCR positive swab >90 days after primary infection
Results
> Of 1304 identified reinfections, 413 (31.7%) were caused by the B.1.351 variant, 57 (4.4%) by the B.1.1.7 variant, 213 (16.3%) by “wild-type” virus, and 621 (47.6%) were of unknown status.
> Median time between first infection and reinfection was 277 days (IR, 179 to 315).
> The odds of severe disease at reinfection were 0.12 times (95% CI, 0.03 to 0.31) that at primary infection.
> There were no cases of critical disease at reinfection and 28 cases at primary infection: odds ratio of 0.00 (95% CI, 0.00 to 0.64).
> There were no cases of death from Covid-19 at reinfection and 7 cases at primary infection: odds ratio of 0.00 (95% CI, 0.00 to 2.57).
> The odds of the composite outcome of severe, critical, or fatal disease at reinfection were 0.10 times (95% CI, 0.03 to 0.25) that at primary infection.
Reinfections had 90% lower odds of resulting in hospitalization or death than primary infections. Reinfections were rare and were generally mild. For a person who has already had a primary infection, the risk of having a severe reinfection is approximately 1% of the risk of a previously uninfected person having a severe primary infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 24NOV2021 | The N501Y spike substitution enhances SARS-CoV-2 infection and transmission | Liu Y., et al. USA [gotopaper](#) | Virology | Aim: to investigate mechanisms of increased Alpha variant transmission
Methods: A reverse genetics approach along with the hamster model, and HAE cultures were used to probe the impact of spike mutations.
Findings: > From the 8 individual spike protein substitutions, only N501Y exhibited consistent fitness gains for replication in the upper airway in the hamster model as well as primary human airway epithelial cells. > The N501Y substitution recapitulated the phenotype of enhanced viral transmission seen with the combined 8 Alpha spike mutations, suggesting it is a major determinant of increased transmission of this variant. > Mechanistically, the N501Y substitution improved the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa, and elsewhere. N501Y substitution is a major adaptive spike mutation of major concern. N501Y is a critical determinant of enhanced infection of the upper airway and transmission. |
Methods: Retrospective cohort study using data collected between 20/12/2020 and 17/03/2021 from the second largest healthcare provider in Israel to analyze the probability of an additional household infection occurring within 10 days after an index infection.
Findings: > 173,569 households were included, of which 6,351 households had an index infection (mean [SD] age, 58.9 [13.5] years; 50% were women). > Adjusted vaccine effectiveness of Fully Vaccinated compared to Unvaccinated participants was 80.3% [95% CI, 73.5 to 85.4] and 82.0% [95% CI, 75.6 to 86.8] compared to those Recently Vaccinated Once. The BNT162b2 vaccine is effective in a high-risk real-life exposure scenario, but the protection rates afforded in these settings are lower than those previously described. Household members of patients infected with SARS-CoV-2 and individuals with a confirmed significant exposure to SARS-CoV-2 are still at risk of being infected even if fully vaccinated. |
| Science 23NOV2021 | Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial | Gilbert P.B., et al. USA [gotopaper](#) | Vaccines | Immune correlate analysis of the coronavirus efficacy (COVE) phase 3 clinical trial
- Vaccine recipients were assessed for neutralizing and binding antibodies as correlates of risk for COVID-19 disease and as correlates of protection (spike IgG and RBD IgG markers, ID50 and ID80).
- These immune markers were measured at second vaccination and 4 weeks later, with values reported in standardized WHO International Units.
Results: > All markers were inversely associated with COVID-19 risk and directly associated with vaccine efficacy. > Vaccine recipients with post-vaccination 50% neutralization titers 10, 100, and 1000 had estimated vaccine efficacy of 78% (95% confidence interval 54, 89%), 91% (87, 94%), and 96% (94, 98%), respectively. > Neutralizing antibodies mediate about two-thirds of the mRNA-1273 vaccine efficacy
These results help define immune marker correlates of protection and may guide approval decisions for mRNA COVID-19 vaccines and other COVID-19 vaccines. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature 23NOV2021</td>
<td>A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity</td>
<td>Heitmann J.S., et al. Germany</td>
<td>Vaccines</td>
<td>CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins, with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell. Aim: phase I open-label trial on 36 participants aged 18 to 80 years, who received one single subcutaneous CoVac-1 vaccination. Primary endpoint: safety analysed until day 56. Main secondary endpoint: immunogenicity in terms of CoVac-1-induced T-cell response, analysed as until day 28 and in the follow-up until month 3. Results: > No serious adverse events and no grade 4 adverse events were observed. > Expected local granuloma formation was observed in all study subjects, while systemic reactogenicity was absent or mild. > SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T-helper 1 CD4+ and CD8+ T cells. > CoVac-1-induced interferon-γ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. > Vaccine-induced T-cell responses were unaffected by current SARS-CoV-2 variants of concern (VOC). CoVac-1 showed a favourable safety profile and induced broad, potent and VOC-independent T-cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell/antibody deficiency.</td>
</tr>
<tr>
<td>Lancet Infect Dis. 23NOV2021</td>
<td>Effectiveness of an inactivated virus-based SARS-CoV-2 vaccine, BBV152, in India: a test-negative, case-control study</td>
<td>Desai D., et al. India</td>
<td>Vaccines</td>
<td>We aimed to evaluate the effectiveness of BBV152 (whole-virion inactivated SARS-CoV-2 vaccine) against symptomatic RT-PCR-confirmed SARS-CoV-2 infection. Method: > We conducted a test-negative, case-control study among employees of the All India Institute of Medical Sciences (a tertiary care hospital in New Delhi, India), who had symptoms suggestive of COVID-19 and had an RT-PCR test for SARS-CoV-2 during the peak of the second wave of the COVID-19 pandemic in India between April 15 and May 15, 2021. > The primary outcome was effectiveness of two doses of BBV152 (with the second dose received at least 14 days before testing) in reducing the odds of symptomatic RT-PCR-confirmed SARS-CoV-2 infection, expressed as (1 – odds ratio) x 100%. Findings: > 3732 individuals had an RT-PCR test, of these, 2714 symptomatic employees had data on vaccination status, and 1068 matched case-control pairs were available for analysis. > The adjusted effectiveness of BBV152 against symptomatic COVID-19 after two doses administered at least 14 days before testing was 50% (95% CI 33–62; p=0.0001). > The adjusted effectiveness of two doses administered at least 28 days before testing was 46% (95% CI 22–62) and administered at least 42 days before testing was 57% (21–76) > After excluding participants with previous SARS-CoV-2 infections, the adjusted effectiveness of two doses administered at least 14 days before testing was 47% (95% CI 29–61). This study shows the effectiveness of two doses of BBV152 against symptomatic COVID-19 in the context of a huge surge in cases, presumably dominated by the potentially immune-evasive delta (B.1.617.2) variant of SARS-CoV-2. Our findings support the ongoing roll-out of this vaccine to help control the spread of SARS-CoV-2, while continuing the emphasis on adherence to non-pharmacological measures.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Lancet Infect Dis.** 23NOV2021 | Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial | Kremsner P. G., et al. International gotopaper | Vaccines | **Aim:** to analyse the efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate.
Methods: HERALD is a randomised, observer-blinded, placebo-controlled, phase 2b/3 clinical trial conducted in 47 centres in ten countries in Europe and Latin America. By use of an interactive web response system and stratification by country and age group (18–60 years and ≥61 years), adults with no history of virologically confirmed COVID-19 were randomly assigned (1:1) to receive intramuscularly either two 0.6 mL doses of CVnCoV containing 12 μg of mRNA or two 0.6 mL doses of 0.9% NaCl (placebo) on days 1 and 29.
Findings: > Between Dec 11, 2020, and April 12, 2021, 39 680 participants were enrolled and randomly assigned to receive either CVnCoV (n=19 846) or placebo (n=19 834), of whom 19 783 received at least one dose of CVnCoV and 19 746 received at least one dose of placebo. > After a mean observation period of 48·2 days (SE 0·2), 83 cases of COVID-19 occurred in the CVnCoV group (n=12 851) in 1735·29 person-years and 145 cases occurred in the placebo group (n=12 211) in 1569·87 person-years, resulting in an overall vaccine efficacy against symptomatic COVID-19 of 48·2% (95% CI 31·0–61·4, p=0.016). > Vaccine efficacy against moderate-to-severe COVID-19 was 70·7% (95% CI 42·5–86·1; CVnCoV 12 cases in 1735·29 person-years, placebo 37 cases in 1569·87 person-years). > In participants aged 18–60 years, vaccine efficacy against symptomatic disease was 52·5% (95% CI 36·2–64·8; CVnCoV 71 cases in 1591·47 person-years, placebo, 136 cases in 1449·23 person-years). > The most frequently reported local reaction after any dose in the CVnCoV group was injection-site pain (1678 [83·6%] of 2007), with 22 grade 3 reactions, and the most frequently reported systematic reactions were fatigue (1541 [76·9%] of 2003) and headache (1541 [76·9%] of 2003). > CVnCoV was efficacious in the prevention of COVID-19 of any severity and had an acceptable safety profile. Taking into account the changing environment, including the emergence of SARS-CoV-2 variants, and timelines for further development, the decision has been made to cease activities on the CVnCoV candidate and to focus efforts on the development of next-generation vaccine candidates. |
| **Clin Infect Dis.** 19NOV2021 | Efficacy of Early Treatment with Favipiravir on Disease Progression among High Risk COVID-19 Patients: A Randomized, Open-Label Clinical Trial | Chuan Huan C., et al. Malaysia gotopaper | Therapeutics | **Aim:** to determine its effect in preventing disease progression from non-hypoxia to hypoxia among high risk COVID-19 patients.
Methods: Open-label, randomized clinical trial conducted at 14 public hospitals across Malaysia from February to June 2021 among 500 symptomatic, RT-PCR confirmed COVID-19 patients, aged ≥50 years with ≥1 comorbidity, and hospitalized within first 7 days of illness.
Findings: > Among 500 patients were randomized (mean age, 62.5 [SD 8.0] years; 258 women [51.6%]; and 251 [50.2%] had COVID-19 pneumonia), 487 (97.4%) patients completed the trial. > Clinical progression to hypoxia occurred in 46 (18.4%) patients on favipiravir plus standard care and 37 (14.8%) on standard care alone (OR 1.30; 95%CI, 0.81–2.09; P=0.28). > All three pre-specified secondary end points were similar between both groups.
> Mechanical ventilation occurred in 6 (2.4%) vs 5 (2.0%) (OR 1.20; 95%CI, 0.36–4.23; P=0.76), ICU admission in 13 (5.2%) vs 12 (4.8%) (OR 1.09; 95%CI, 0.48–2.47; P=0.84), and in-hospital mortality in 5 (2.0%) vs 0 (OR 12.54; 95%CI, 0.76–207.84; P=0.8). > Among COVID-19 patients at high risk of disease progression, early treatment with oral favipiravir did not prevent their disease progression from non-hypoxia to hypoxia. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Cell 19NOV2021 | Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape | Bushman M., et al. USA [gotopaper](#) | Variants | **Aim:** To stimulate the dynamics of wildtype and 16 variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions by using a mathematical model.
Methods: An ordinary differential equation (ODE) compartment model was used to simulate the dynamics of WT and variant strains of SARS-CoV-2 in the context of nonpharmaceutical interventions (NPIs) and vaccine rollout.
Findings:
- Variants with enhanced transmissibility invade easily in susceptible populations, while variants with partial immune escape do not; the latter can sometimes produce a second wave of infections, but these primarily occur in recovered and vaccinated individuals, who typically experience mild disease.
- Although the impact of partial immune escape on its own is relatively mild, variants with a combination of enhanced transmissibility and immune escape increase not just the total size of the epidemic but also the number of primary infections in susceptible hosts, who are more likely to suffer severe illness or death. Thus, partial immune escape can have severe consequences, but mainly when paired with enhanced transmissibility.
These results provide a theoretical basis to understand the behavior of existing variants, anticipate the behavior of future variants, and develop appropriate strategies to mitigate the impact of variants of concern in populations across the world. The findings are consistent with the global sweeps by highly transmissible variants Alpha and Delta, as well as the failure of Beta (which shows evidence of partial immune escape) to reach high frequency in most areas. The ability to find patterns of risk by modeling different variants across a wide range of scenarios suggests that this is a useful approach to identify variant phenotypes of particular concern. Lastly, this work underscores the importance of vaccination on a global scale, as quickly as possible, to mitigate the impact of present and future variants. |
| Nature 18NOV2021 | Optimization of Non-Coding Regions for a Non-Modified mRNA COVID-19 Vaccine | Gebre M.S., et al. USA [gotopaper](#) | Vaccines | The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans[1]. CV2CoV is a second-generation mRNA vaccine with non-modified nucleosides but optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates.
Method:
- Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates
- We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group)
Findings:
- CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including the delta variant.
- Moreover, CV2CoV proved comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques
While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tract. Binding and neutralizing antibody titers correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in nonhuman primates. |
Table of Content

<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA Net Open 16NOV2021</td>
<td>Association of SARS-CoV-2 Infection With Psychological Distress, Psychotropic Prescribing, Fatigue, and Sleep Problems Among UK Primary Care Patients</td>
<td>Abel K.M., et al. UK gotopaper</td>
<td>Long Covid</td>
<td>Aim: To assess risk of incident or repeat psychiatric illness, fatigue, or sleep problems following SARS-CoV-2 infection and to analyze changes according to demographic subgroups. Methods: Cohort study assembled matched cohorts using the Clinical Practice Research Datalink Aurum, a UK primary care registry of 11,923,499 individuals aged 16 years or older. Patients were followed-up for up to 10 months, from February 1 to December 9, 2020. Findings: > Of 11,923,105 eligible individuals (6,011,020 [50.4%] women and 5,912,085 [49.6%] men; median [IQR] age, 44 [30-61] years), 232,780 individuals (2.0%) had positive result on a SARS-CoV-2 test. > After applying selection criteria, 86,922 individuals were in the matched cohort without prior mental illness, 19,020 individuals had prior anxiety or depression, 1036 individuals had psychosis, 4,152 individuals had fatigue, and 4,539 individuals had sleep problems. > After adjusting for observed confounders, there was an association between positive SARS-CoV-2 test results and psychiatric morbidity (adjusted hazard ratio [aHR], 1.83; 95% CI, 1.66-2.02), fatigue (aHR, 5.98; 95% CI, 5.33-6.71), and sleep problems (aHR, 3.16; 95% CI, 2.64-3.78). > There was a similar risk of incident psychiatric morbidity for those with a negative SARS-CoV-2 test results (aHR, 1.71; 95% CI, 1.65-1.77) and a larger increase associated with influenza (aHR, 2.98; 95% CI, 1.55-5.75). In this cohort study of individuals registered at an English primary care practice during the pandemic, there was consistent evidence that SARS-CoV-2 infection was associated with increased risk of fatigue and sleep problems.</td>
</tr>
<tr>
<td>JAMA Net Open 15NOV2021</td>
<td>Mortality Risk Among Patients With COVID-19 Prescribed Selective Serotonin Reuptake Inhibitor Antidepressants</td>
<td>Oskotsky T., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Aim: Are selective serotonin reuptake inhibitors (SSRIs), specifically fluoxetine hydrochloride, associated with a lower mortality risk among patients with COVID-19? Findings In this multicenter cohort study analyzing electronic health records of 83,584 patients diagnosed with COVID-19, including 3,401 patients who were prescribed SSRIs, a reduced relative risk of mortality was found to be associated with the use of SSRIs—specifically fluoxetine—compared with patients who were not prescribed SSRIs. These findings suggest that SSRI use may reduce mortality among patients with COVID-19, although they may be subject to unaccounted confounding variables; further investigation via large, randomized clinical trials is needed.</td>
</tr>
</tbody>
</table>
| Nature Med. 15NOV2021 | Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19 | Sinha S., et al. Canada gotopaper | Immunology | **Aim:** to compare innate immune dynamics during COVID-19 ARDS to ARDS from other respiratory pathogens. To understand the mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19. **Methods:** Single-cell RNA sequencing and plasma proteomics from whole-blood from critically ill patients admitted ICUs **Findings:** > Compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. > Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. > Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. > Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. **Authors**’ single-cell atlas defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Nature Commun. 12NOV2021** | Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status | Xie Y., et al. Canada [gotopaper](#) | Long Covid | **Aim:** what is the burden of Post-Acute Sequelae of SARS-CoV-2 infection (PASC) —defined as having at least one post-acute sequela? And does the burden of individual sequelae differ by age, race, sex, and baseline health status?
Methods: Healthcare databases of the US Department of Veterans Affairs were used to build a cohort of 181,384 people with COVID-19 and 4,397,509 non-infected controls.
Findings:
> Burden of Post-Acute Sequelae of SARS-CoV-2 infection (PASC) —defined as the presence of at least one sequela in excess of non-infected controls—was 73.43 (72.10, 74.72) per 1000 persons at 6 months.
> Burdens of individual sequelae varied by demographic groups (age, race, and sex) but were consistently higher in people with poorer baseline health and in those with more severe acute infection.
> In sum, the burden of PASC is substantial; PASC is non-monolithic with sequelae that are differentially expressed in various population groups. Collectively, these results may be useful in informing health systems capacity planning and care strategies of people with PASC. |
| **Lancet 11NOV2021** | Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial | Lazarus R., et al. UK [gotopaper](#) | Vaccines | We aimed to assess the safety of concomitant administration of ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine
Method
> In this multicentre, randomised, controlled, phase 4 trial, adults in receipt of a single dose of ChAdOx1 or BNT162b2 were enrolled at 12 UK sites and randomly assigned (1:1) to receive concomitant administration of either an age-appropriate influenza vaccine or placebo alongside their second dose of COVID-19 vaccine. 3 weeks later the group who received placebo received the influenza vaccine, and vice versa.
> The primary endpoint was one or more participant-reported solicited systemic reactions in the 7 days after first trial vaccination(s), with a difference of less than 25% considered non-inferior
Findings
> Between April 1 and June 26, 2021, 679 participants were recruited to one of six cohorts, as follows: 129 ChAdOx1 plus cellular quadrivalent influenza vaccine, 139 BNT162b2 plus cellular quadrivalent influenza vaccine, 146 ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine, 79 BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine, 128 ChAdOx1 plus recombinant quadrivalent influenza vaccine, and 58 BNT162b2 plus recombinant quadrivalent influenza vaccine.
> 340 participants were assigned to concomitant administration of influenza and a second dose of COVID-19 vaccine at day 0 followed by placebo at day 21, and 339 participants were randomly assigned to concomitant administration of placebo and a second dose of COVID-19 vaccine at day 0 followed by influenza vaccine at day 21.
> Non-inferiority was indicated in four cohorts, as follows: ChAdOx1 plus cellular quadrivalent influenza vaccine (risk difference for influenza vaccine minus placebos −1·29%, 95% CI −14·7 to 12·1), BNT162b2 plus cellular quadrivalent influenza vaccine (6·17%, −6·27 to 18·6), BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine (−12·9%, −34·2 to 8·37), and ChAdOx1 plus recombinant quadrivalent influenza vaccine (2·53%, −13·3 to 18·3). In the other two cohorts, the upper limit of the 95% CI exceeded the 0·25 non-inferiority margin (ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine 10·3%, −5·44 to 26·0; BNT162b2 plus recombinant quadrivalent influenza vaccine 6·75%, −11·8 to 25·3).
> Most systemic reactions to vaccination were mild or moderate. Rates of local and unsolicited systemic reactions were similar between the randomly assigned groups. One serious adverse event, hospitalisation with severe headache, was considered related to the trial intervention. Immune responses were not adversely affected.
Concomitant vaccination with ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine raises no safety concerns and preserves antibody responses to both vaccines. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Method
> In this multicentre, double-blind, placebo-controlled trial, done at 43 centres in France, we randomly assigned patients (1:1) receiving invasive mechanical ventilation for up to 72 h with PCR confirmed COVID-19 and associated moderate-to-severe ARDS to receive either IVIG (2 g/kg over 4 days) or placebo.
> The primary outcome was the number of ventilation-free days by day 28, assessed according to the intention-to-treat principle
Findings
> Between April 3, and October 20, 2020, 146 patients (43 [29%] women) were eligible for inclusion and randomly assigned: 69 (47%) patients to the IVIG group and 77 (53%) to the placebo group
> The intention-to-treat analysis showed no statistical difference in the median number of ventilation-free days at day 28 between the IVIG group (0·0 [IQR 0·0–8·0]) and the placebo group (0·0 [0·0–6·0]; difference estimate 0·0 [0·0–0·0]; p=0·21).
> Serious adverse events were more frequent in the IVIG group (78 events in 22 [32%] patients) than in the placebo group (47 events in 15 [20%] patients; p=0·089).
In patients with COVID-19 who received invasive mechanical ventilation for moderate-to-severe ARDS, IVIG did not improve clinical outcomes at day 28 and tended to be associated with an increased frequency of serious adverse events, although not significant. The effect of IVIGs on earlier disease stages of COVID-19 should be assessed in future trials. |
| Nature Med. 11NOV2021 | Deaths in children and young people in England after SARS-CoV-2 infection during the first pandemic year | Smith C., et al. UK | Public Health / Epidemiology | Aim: to quantify the number of Child and Young People (CYP) who died of SARS-CoV-2 distinguishing between CYP who died of SARS-CoV-2 and those who died of another cause with a coincidental positive test for SARS-CoV-2 (March 2020-February 2021 - WT and Apha variants were predominant)
> Of the 12,023,568 CYP living in England, 3,105 died, including 61 who tested positive for SARS-CoV-2. Of these deaths, 25 were due to SARS-CoV-2 infection (mortality rate, 2 per million), including 22 due to Covid-19 and 3 due to paediatric multisystemic inflammatory syndrome temporally associated with SARS-CoV-2.
> CYP who died from SARS-CoV-2 were more likely to be adolescents than younger children.
> 23 CYPs died of SARS-CoV-2 within 28 days of a positive SARS-CoV-2 test; of these deaths, 21 occurred within 7 days of a positive test.
> 99.995% of CYPs who tested positive survived.
> CYP aged >10 years, of Asian or black ethnicity and with comorbidities were over-represented in SARS-CoV-2 related deaths compared to other CYP deaths.
These results may be useful in guiding decisions about protection and vaccination of children and young people. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Lancet 11NOV2021** | **Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial** | Ella R., et al. India [gotopaper](#) | Vaccines | **Aim:** to report the clinical efficacy against COVID-19 infection of BBV152, a whole virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) in Indian adults.
- Phase 3 to evaluate the efficacy, safety, and immunological lot consistency of BBV152.
- Adults were randomised to receive two intramuscular doses of vaccine or placebo administered 4 weeks apart
- **Primary outcome:** efficacy of the BBV152 vaccine in preventing a first occurrence of laboratory-confirmed (RT-PCR-positive) symptomatic COVID-19 (any severity), occurring ≥14 days after the second dose in the per-protocol population.
- Safety and reactogenicity throughout the duration of the study in all participants who had received at least one dose of vaccine or placebo.
- **Results:**
 > Between Nov 16, 2020, and Jan 7, 2021, we recruited 25,798 participants who were randomly assigned to receive BBV152 or placebo; 24,419 received two doses of BBV152 (n=12,221) or placebo (n=12,198).
 > Efficacy analysis was dependent on having 130 cases of symptomatic COVID-19, which occurred when 16,973 initially seronegative participants had at least 14 days follow-up after the second dose.
 > 24 (0.3%) cases occurred among 8,471 vaccine recipients and 106 (1.2%) among 8,502 placebo recipients, giving an overall estimated vaccine efficacy of 77.8% (95% CI 65.2–86.4).
 > In the safety population (n=25,753), 5,959 adverse events occurred in 3,194 participants. BBV152 was well tolerated; the same proportion of participants reported adverse events in the vaccine group (1,597 [12.4%] of 12,879) and placebo group (1,597 [12.4%] of 12,874), with no clinically significant differences in the distributions of solicited, unsolicited, or serious adverse events between the groups, and no cases of anaphylaxis or vaccine-related deaths.
BBV152 was highly efficacious against laboratory-confirmed symptomatic COVID-19 disease in adults. Vaccination was well tolerated with no safety concerns raised in this interim analysis. |
| **Cell 10NOV2021** | **Identification of a Therapeutic Interfering Particle — a single-administration SARS-CoV-2 antiviral intervention with a high barrier to resistance** | Chaturvedi S., et al. USA [gotopaper](#) | Therapeutics | **Background:** Viral-deletion mutants that conditionally replicate and inhibit wild-type virus (i.e., Defective Interfering Particles, DIPs) have long been proposed as single-administration interventions with high genetic barriers to resistance. However, theories predict that robust, therapeutic DIPs (i.e., Therapeutic Interfering Particles—TIPs) must conditionally spread between cells with R0>1.
Aim: to report engineering of TIPs that conditionally replicate with SARS-CoV-2, exhibit R0>1, and inhibit viral replication 10–100 fold.
Results:
> Inhibition occurs via competition for viral replication machinery and, a single administration of TIP RNA inhibits SARS-CoV-2 sustainably in continuous cultures.
> TIPs maintain efficacy against neutralization-resistant variants (e.g., B.1.351).
> In hamsters, both prophylactic and therapeutic intranasal administration of lipid-nanoparticle TIPs durably suppressed SARS-CoV-2 by 100 fold in the lungs, reduced pro-inflammatory cytokine expression, and prevented severe pulmonary edema.
> These data provide proof-of-concept for a class of single-administration antivirals that may circumvent current requirements to continually update medical countermeasures against new variants. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 10NOV2021 | Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2 | Swadling L., et al. UK | Immunology | **Aim:** to measure SARS-CoV-2-reactive T-cells, including those against the early transcribed replication transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCW) remaining repeatedly negative by PCR, antibody binding, and neutralisation (seronegative HCW, SN-HCW).

Methods:
Analysis of the understudied T-cells directed against the core RTC within open reading frame (ORF)1ab (RNA-polymerase co-factor non-structural protein 7 [NSP7], RNA-polymerase NSP12, and helicase NSP13, henceforth referred to as RTC).

Findings:
> SN-HCW had stronger, more multispecific memory T-cells than an unexposed pre-pandemic cohort, and more frequently directed against the RTC than the structural protein-dominated responses seen post-detectable infection (matched concurrent cohort). SN-HCW with the strongest RTC-specific T-cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2, suggesting abortive infection.

> RNA-polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades.

> RNA-polymerase was preferentially targeted (amongst regions tested) by T-cells from pre-pandemic cohorts and SN-HCW.

> Enriched pre-existing RNA-polymerase-specific T-cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection.

These findings highlight RTC-specific T-cells as targets for vaccines against endemic and emerging Coronaviridae.

| Clin Microbiol Infect. 10NOV2021 | Public opinion on a mandatory COVID-19 vaccination policy in France: a cross sectional survey | Gagneux-Brunon A., et al. France | Public Health / Epidemiology | Our aim was to assess attitudes toward COVID-19 mandatory vaccination in France before the announcement and factors associated with opposition to this type of policy.

Method
> Between the 10th and the 23rd of May 2021, we conducted a cross-sectional online survey among a representative sample of the French population aged 18 and over and a specific sample of the French Senior Population over 65.

Findings
> Among 3,056 respondents, 1,314 (43.0 %) were in favor of mandatory COVID-19 vaccination, 1,281 (41.9 %) were opposed to such a policy, and 461 (15.1 %) were undecided.

> Among opponents to COVID-19 mandatory vaccination for the general population, 385 (30.05 %) were in favor of a mandatory COVID-19 vaccination for healthcare workers (HCWs).

> In multivariate analysis, age groups 18-24 years, and 25-34 years were significantly more opposed than the reference group (>75 years old) with respective adjusted odds ratio (aOR) and 95 % confidence interval (95 % CI) 4.67 (1.73-12.61) and 3.74 (1.57-8.93).

> No intention of getting COVID-19 vaccine was strongly associated with opposition to mandatory vaccination with aOR 10.67 (95 % CI 6.41-17.76).

> In comparison with partisans of the center, partisans of the far left and green parties were more likely to be opposed to COVID-19 mandatory vaccine with respective aOR (95 % CI) 1.89 (1.06-3.38) and 2.08 (1.14-3.81).

Attitudes toward mandatory COVID-19 vaccination are split in the French general population, and the debate might become politicized.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 09NOV2021 | Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age | Walter E.B., et al. USA [gotopaper](#) | Vaccines | **Aim:** to present results of a phase 1, dose-finding study and an ongoing phase 2–3 randomized trial to investigate the safety, immunogenicity, and efficacy of two doses of the BNT162b2 vaccine administered 21 days apart in 5-to-11-year-old children.
- In the phase 2–3 trial, participants were randomly assigned in a 2:1 ratio to receive two doses of either the BNT162b2 vaccine or placebo.
- Immune responses 1 month after the second dose of BNT162b2 were immunologically bridged to those in 16-to-25-year-olds from the pivotal trial of two 30-μg doses of BNT162b2.
- Vaccine efficacy against Covid-19 at 7 days or more after the second dose was assessed.

Results
> During the phase 1 study, a total of 48 children 5 to 11 years of age received 10 μg, 20 μg, or 30 μg of the BNT162b2 vaccine (16 children at each dose level). On the basis of reactogenicity and immunogenicity, a dose level of 10 μg was selected for further study.
> In the phase 2–3 trial, a total of 2268 children were randomly assigned to receive the BNT162b2 vaccine (1517 children) or placebo (751 children). At data cutoff, the median follow-up was 2.3 months.
> In the 5-to-11-year-olds the BNT162b2 vaccine had a favorable safety profile. No vaccine-related serious adverse events were noted.
> One month after the second dose, the geometric mean ratio of SARS-CoV-2 neutralizing titers in 5-to-11-year-olds to those in 16-to-25-year-olds was 1.04 (95% confidence interval [CI], 0.93 to 1.18), a ratio meeting the prespecified immunogenicity success criterion (lower bound of two-sided 95% CI, >0.67; geometric mean ratio point estimate, 20.8).
> Covid-19 with onset 7 days or more after the second dose was reported in three recipients of the BNT162b2 vaccine and in 16 placebo recipients (vaccine efficacy, 90.7%; 95% CI, 67.7 to 98.3).

A Covid-19 vaccination regimen consisting of two 10-μg doses of BNT162b2 administered 21 days apart was found to be safe, immunogenic, and efficacious in children 5 to 11 years of age. |
| Nature Commun. 09NOV2021 | A novel SARS-CoV-2 related coronavirus in bats from Cambodia | Delaune D., et al. France [gotopaper](#) | Public Health / Epidemiology | To date, the closest relatives to SARS-CoV-2 have been detected in Rhinolophus bats sampled in the Yunnan province, China. Here we describe the identification of SARS-CoV-2 related coronaviruses in two Rhinolophus shameli bats sampled in Cambodia in 2010.

Findings
> Metagenomic sequencing identifies nearly identical viruses sharing 92.6% nucleotide identity with SARS-CoV-2.
> Most genomic regions are closely related to SARS-CoV-2, with the exception of a region of the spike, which is not compatible with human ACE2-mediated entry

The discovery of these viruses in a bat species not found in China indicates that SARS-CoV-2 related viruses have a much wider geographic distribution than previously reported, and suggests that Southeast Asia represents a key area to consider for future surveillance for coronaviruses. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| JAMA Intern Med. 08NOV2021 | **Association of Self-reported COVID-19 Infection and SARS-CoV-2 Serology Test Results With Persistent Physical Symptoms Among French Adults During the COVID-19 Pandemic** | Matta J., et al. France [gotopaper](#) | Public Health / Epidemiology | **Aim:** to examine the associations of self-reported COVID-19 infection and SARS-CoV-2 serology test results with persistent physical symptoms (eg, fatigue, breathlessness, or impaired attention) in the general population during the COVID-19 pandemic.
- 26 823 individuals from the French population-based CONSTANCES cohort, included between 2012 and 2019, who took part in the nested SAPRIS and SAPRIS-SERO surveys.
- May–Nov 2020: an enzyme-linked immunosorbent assay was used to detect anti–SARS-CoV-2 antibodies. Dec 2020-Jan 2021: participants reported whether they believed they had experienced COVID-19 infection and had physical symptoms during the previous 4 weeks that had persisted for at least 8 weeks.
Results:
> 26 823 participants with complete data were included in the present study (mean [SD] age, 49.4 [12.9] years; 13 731 women [51.2%]).
> Self-reported infection was positively associated with persistent physical symptoms, with odds ratios ranging from 1.39 (95% CI, 1.03–1.86) to 16.37 (95% CI, 10.21–26.24) except for hearing impairment (odds ratio, 1.45; 95% CI, 0.82–2.55) and sleep problems (odds ratio, 1.14; 95% CI, 0.89–1.46).
> A serology test result positive for SARS-COV-2 was positively associated only with persistent anosmia (odds ratio, 2.72; 95% CI, 1.66–4.46), even when restricting the analyses to participants who attributed their symptoms to COVID-19 infection.
> Further adjusting for self-rated health or depressive symptoms yielded similar results.
> There was no significant interaction between belief and serology test results.
Persistent physical symptoms after COVID-19 infection may be associated more with the belief in having been infected with SARS-CoV-2 than with having laboratory-confirmed COVID-19 infection. |
| Clin Microbiol Infect. 08NOV2021 | **Female gender is associated with “long COVID” syndrome: a prospective cohort study** | Bai F., et al. Italy [gotopaper](#) | Long Covid | **Aim:** to explore the association between female gender and “long COVID” syndrome, defined as persistence of physical and/or psychological symptoms for more than 4 weeks after recovery from acute COVID-19 disease.
The secondary aim was to identify predictors of “long COVID” syndrome by multivariable logistic regression analysis.
Methods:
Single-centre prospective cohort study conducted at San Paolo Hospital in Milan, Italy. Adult patients were enrolled to evaluate the post-COVID outpatient service of the Infectious Diseases Unit between April 15th 2020 and December 15th 2020.
Findings:
> A total of 377 patients were enrolled in the study. The median time from symptom onset to clinical recovery and virological clearance was 79 (IQR 69–102) and 56 (IQR 47–74) days, respectively.
> A diagnosis of “long COVID” syndrome was made in 260/377 (69%) patients. The most common reported symptoms were fatigue (149/377, 39.5%), exertional dyspnoea (109/377, 28.9%), musculoskeletal pain (80/377, 21.2%) and “brain fog” (76/377, 20.2%).
> Female gender was independently associated with “long COVID” syndrome at multivariable analysis (AOR 3.3 versus males, 95%CI 1.8–6.2, p<0.0001).
> Advanced age (AOR 1.03 for 10 years older, 95%CI 1.01–1.05, p=0.01) and active smoking (AOR 0.19 for former smokers vs active smokers, 95%CI 0.06–0.62, p=0.002) were also associated with a higher risk of “long COVID”
Factors that were found to be associated with a higher risk of developing “long COVID” syndrome were female gender and active smoking, but not severity of the acute disease. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Commun.</td>
<td>Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets</td>
<td>Cox R.M., et al. USA</td>
<td>Therapeutics</td>
<td>Aim: to characterize the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524
Methods: The ferret model was used to test the oral anti-SARS-CoV-2 efficacy of GS-621763. The GS-621763 prodrug is presystemically hydrolyzed to afford high systemic exposures of GS-441524
Findings: > Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. > Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. > Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma y, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. > These findings demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.</td>
</tr>
<tr>
<td>JAMA</td>
<td>Antibody Titers Before and After a Third Dose of the SARS-CoV-2 BNT162b2 Vaccine in Adults Aged ≥60 Years</td>
<td>Eliakim-Raz N., et al. Israel</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to assess antispike (anti-S) IgG antibody titers before and after a third BNT162b2 dose in individuals aged 60 years and older because this population is at high risk of developing severe SARS-CoV-2 disease and was the first to receive authorization for a third dose.
Results: > Among the 97 study participants, the median age was 70 years (IQR, 67-74), and 61% were women. > Before the third dose (median, 221 days [IQR, 218-225] after the first vaccination), 94 participants (97%) were seropositive. > The median titer level increased significantly after the third dose, from a median of 440 AU/mL (IQR, 294-923) to 25 468 AU/mL (IQR, 14 203-36 618) (P < .001), and all participants became seropositive > No significant correlation was observed between age and IgG titers (R = 0.075; P = .47). > No variable was significantly associated with higher IgG titers, including age, sex, days after first vaccination, and comorbidities > No major adverse events were reported.
This study found that a third BNT162b2 dose in adults aged 60 years and older was associated with significantly increased IgG titers after 10 to 19 days, with no major adverse events.</td>
</tr>
<tr>
<td>Science</td>
<td>SARS-CoV-2 vaccine protection and deaths among US veterans during 2021</td>
<td>Cohn B., et al. USA</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to report SARS-CoV-2 vaccine effectiveness against infection (VE-I) and death (VE-D) by vaccine type in the Veterans Health Administration.
Methods: Examine SARS-CoV-2 infection and deaths by vaccination status in 780,225 Veterans during the period February 1, 2021 to October 1, 2021, encompassing the emergence and dominance of the Delta variant in the U.S.
Findings: > From February to October 2021, VE-I declined from 87.9% to 48.1%, and the decline was greatest for the Janssen vaccine resulting in a VE-I of 13.1%.
 > Although breakthrough infection increased risk of death, vaccination remained protective against death in persons who became infected during the Delta surge.
 > From July to October 2021, VE-D for age 65 years was 73.0% for Janssen, 81.5% for Moderna, and 84.3% for Pfizer-BioNTech; VE-D for age 265 years was 52.2% for Janssen, 75.5% for Moderna, and 70.1% for Pfizer-BioNTech.
Findings support continued efforts to increase vaccination, booster campaigns, and multiple, additional layers of protection against infection.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Nature Commun. 04NOV2021</td>
<td>Correlation of SARS-CoV-2 breakthrough infections to time-from-vaccine</td>
<td>Mizrahi B., et al. Israel gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Leveraging the centralized computerized database of Maccabi Healthcare Services (MHS), we assessed the correlation between time-from-vaccine and incidence of breakthrough infection between June 1 and July 27, the date of analysis. Findings > After controlling for potential confounders as age and comorbidities, we found a significant 1.51 fold (95% CI, 1.38–1.66) increased risk for infection for early vaccinees compared to those vaccinated later that was similar across all ages groups. The increased risk reached 2.26-fold (95% CI, 1.80–3.01) when comparing those who were vaccinated in January to those vaccinated in April</td>
</tr>
<tr>
<td>Cell 03NOV2021</td>
<td>Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb</td>
<td>Khan M., et al. International gotopaper</td>
<td>Clinics</td>
<td>Aim: to develop a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Methods: Cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2 in order to catch the virus while it was still replicating. Findings: > Ciliated cells are the main target cell type for SARS-CoV-2 in respiratory mucosa. Sustentacular cells are the major target cell type in the olfactory mucosa. > The authors failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. > These findings suggest that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.</td>
</tr>
<tr>
<td>Clin Infect Dis. 03NOV2021</td>
<td>Myocarditis Following COVID-19 mRNA Vaccine: A Case Series and Incidence Rate Determination</td>
<td>Perez Y., et al. USA gotopaper</td>
<td>Vaccines</td>
<td>Aim: to measure the incidence rate ratio for myocarditis temporally related to COVID-19 mRNA vaccination compared to myocarditis in a comparable population from 2016 through 2020. Methods: A retrospective case-series was performed utilizing the Mayo Clinic COVID-19 Vaccine Registry. Clinical characteristics and outcomes of the affected patients was collected. A total of 21 individuals were identified, but ultimately 7 patients met the inclusion criteria for vaccine-associated myocarditis Results: > The overall incidence rate ratio (IRR) of COVID-19 related myocarditis was 4.18 (CI95% 1.63, 8.98) which was entirely attributable to an increased IRR among adult males (IRR 6.69, CI95% 2.35, 15.52) compared to females (IRR 1.41, CI95% 0.03, 8.45). > All cases occurred within 2 weeks of a dose of the COVID-19 mRNA vaccine with the majority occurring within 3 days (range 1-13 days) following the second dose (6/7 patients, 86%). > Overall, cases were mild, and all patients survived. Myocarditis is a rare adverse event associated with COVID-19 mRNA vaccines, and in adult males it occurs with significantly higher incidence than the background population rate. Recurrence of myocarditis after a subsequent mRNA vaccine dose is not known at this time.</td>
</tr>
</tbody>
</table>
Effects of covid-19 pandemic on life expectancy and premature mortality in 2020: time series analysis in 37 countries

Islam N., et al.
International
gotopaper

Public Health /
Epidemiology

Aim: To estimate the changes in life expectancy and years of life lost in 2020 associated with the covid-19 pandemic in 37 upper-middle and high income countries or regions.

- Annual all cause mortality data from the Human Mortality Database for 2005-20, harmonised and disaggregated by age and sex.
- Reduction in life expectancy was estimated as the difference between observed and expected life expectancy in 2020. Excess years of life lost were estimated as the difference between the observed and expected years of life lost in 2020.

Results
> Reduction in life expectancy in men and women was observed in all the countries studied except New Zealand, Taiwan, and Norway, where there was a gain in life expectancy in 2020. No evidence was found of a change in life expectancy in Denmark, Iceland, and South Korea.

> The highest reduction in life expectancy was observed in Russia (men: −2.33, 95% confidence interval −2.50 to −2.17; women: −2.14, −2.25 to −2.03), the United States (men: −2.27, −2.39 to −2.15; women: −1.61, −1.70 to −1.51), Bulgaria (men: −1.96, −2.11 to −1.81; women: −1.37, −1.74 to −1.01), Lithuania (men: −1.83, −2.07 to −1.59; women: −1.21, −1.36 to −1.05), Chile (men: −1.64, −1.97 to −1.32; women: −0.88, −1.28 to −0.50), and Spain (men: −1.35, −1.53 to −1.18; women: −1.13, −1.37 to −0.90).

> Years of life lost in 2020 were higher than expected in all countries except Taiwan, New Zealand, Norway, Iceland, Denmark, and South Korea. In the remaining 31 countries, more than 222 million years of life were lost in 2020, which is 28.1 million (95% confidence interval 26.8m to 29.5m) years of life lost more than expected (17.3 million (16.8m to 17.8m) in men and 10.8 million (10.4m to 11.3m) in women).

> The highest excess years of life lost per 100,000 population were observed in Bulgaria (men: 7260, 95% confidence interval 6820 to 7710; women: 3730, 2740 to 4730), Russia (men: 7020, 6550 to 7480; women: 5430, 4750 to 6070), Lithuania (men: 2640, 2310 to 2980), the US (men: 2430, 2120 to 2730), Brazil (men: 1920, 1590 to 2240), and Hungary (men: 1860, 1590 to 2120; women: 1130, 880 to 1400).

> The excess years of life lost were relatively low in people younger than 65 years, except in Russia, Bulgaria, Lithuania, and the US where the excess years of life lost was >2000 per 100,000.

More than 28 million excess years of life were lost in 2020 in 31 countries, with a higher rate in men than women. Excess years of life lost associated with the covid-19 pandemic in 2020 were more than five times higher than those associated with the seasonal influenza epidemic in 2015.

Immune Response of Neonates Born to Mothers Infected With SARS-CoV-2

Conti G.M., et al.
Italy
gotopaper

Public Health /
Epidemiology

In this cohort study of 21 mothers who tested positive for SARS-CoV-2 at delivery and their 22 newborns, there was 1 case of potential mother-infant vertical virus transmission and 1 case of horizontal virus transmission.

Findings
> Infants who received breastmilk during the first 2 months of life had significantly higher spike-specific salivary IgA antibody levels compared with formula-fed infants, and IgA spike immune complexes were detected in breastmilk.

Findings suggest that maternal protection goes beyond passive immunity, with immune complexes in breastmilk stimulating the active development of the neonatal immune system.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 03NOV2021 | Phase 3 Trial of mRNA-1273 during the Delta-Variant Surge | Baden L.R., et al. USA gotopaper | Vaccines | **Aim:** to report the incidence of Covid-19 from July 1 to August 27, 2021, during the open-label phase of the mRNA12-73 COVE trial.
Study populations:
- mRNA-1273e group: participants initially been assigned to receive the mRNA-1273 vaccine (July-Dec 2020) - 14,746 participants
- mRNA-1273p group: participants who had initially been assigned to placebo and elected to receive the vaccine in the open-label phase (Dec 2020-April 2021) - 11,431 participants
Baseline characteristics were similar, except that more participants in the mRNA-1273p group were ≥65, and more in the mRNA-1273e group were health care workers.
Median follow-up time was 13.0 months in the mRNA-1273e group and 7.9 months in the mRNA-1273p group.
Results:
> The incidence rate of Covid-19 was the same in the two groups (9.4 cases per 1000 person-years) through June 30, 2021.
> July-August 2021, a total of 162 cases of Covid-19 (>14 days after receipt of the second dose), occurred in the mRNA-1273e group, and 88 in the mRNA-1273p group.
> Incidence of approximately 4 cases per 1000 person-months in the mRNA-1273p group and 6 cases per 1000 person-months in the mRNA-1273e group in July-August 2021, when Delta was prevalent.
> Between-group differences in incidence rates were greater in younger age groups than in older age groups.
> Incidence of severe cases of Covid-19 was 6.2 cases per 1000 person-years in the mRNA-1273e group, and 3.3 cases per 1000 person-years in the mRNA-1273p group (estimated relative difference of 46.0% (95% CI, -52.4 to 83.2).
> There were three Covid-19–related hospitalizations, all in the mRNA-1273e group, of whom two died (>10 months since vaccination, ≥70 years of age, with coexisting medical conditions.
Overall, incidence rates of Covid-19 were lower among participants in the mRNA-1273p group (who had been vaccinated more recently) than among those in the mRNA-1273e group when the delta variant was dominant. The difference may be driven by disease in younger participants, indicating potential confounding behavioral factors. |
| NEJM 03NOV2021 | Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum | Uriu K., et al. Japan gotopaper | Variants | **Background:**
As of August 30, 2021, the mu variant had been detected in 39 countries, the epicenter being s Colombia. The majority of mu variants harbor the T95I and YY144-145TSN mutations in the NTD; the R346K, E484K, and N501Y mutations in the RBD; and the D614G, P681H, and D950N mutations in other regions of the spike protein.
Aim: to assess the sensitivity of the mu variant to antibodies induced by SARS-CoV-2 infection and by vaccination.
Results:
> Pseudovirus neutralization assays with convalescent serum from 13 persons: Mu variant was 10.6 times as resistant to neutralization as the B.1 lineage virus (parental virus).
> Assays with serum samples from 14 persons who received BNT162b2: Mu variant was 9.1 as resistant as the parental virus.
> Mu variant was 2.0 as resistant to neutralization by convalescent serum and 1.5 times as resistant to neutralization by vaccine serum as the beta variant, considered the most resistant variant to date.
The mu variant shows a pronounced resistance to antibodies elicited by natural SARS-CoV-2 infection and by the BNT162b2 mRNA vaccine. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
In vivo antiviral activity of PF-07321332 in a mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA10) model was evaluated.
Findings:
> mice treated twice daily with PF-07321332 (at both 300 mg/kg and 1000 mg/kg doses), were protected from weight loss versus vehicle-treated mice.
> Histopathological analysis and immunostaining of lungs from the SARS-CoV-2 MA10 infected mice shows that PF-07321332 limits cellular infiltration and protects lung tissue from damage due to virus replication
> PF-07321332 demonstrated a favorable off-target selectivity profile in a broad panel of G protein-coupled receptors, kinases, transporters and phosphodiesterase enzyme inhibitor screens, and was devoid of activity against the cardiac ion channels Kv1.1, Cav1.2, and Nav1.5.
PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase I clinical trial in healthy human participants. |
| Nature Med. 02NOV2021 | BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar | Tang P., et al. Qatar / USA [gotopaper](#) | Vaccines | **Aim:** To assess the real-world effectiveness of COVID-19 messenger RNA vaccines against infection with Delta in Qatar’s population.
With the global expansion of the highly transmissible SARS-CoV-2 Delta (B.1.617.2) variant, a matched test-negative case–control study was conducted.
Results:
> From 21 December 2020 to 7 September 2021, 950,232 people had at least one BNT162b2 vaccine dose (median date of first dose was 21 April 2021) and 916,290 were fully vaccinated (median date of second dose was 11 May 2021).
> BNT162b2 effectiveness against any, symptomatic or asymptomatic, Delta infection was 45.3% (95% CI, 22.0–61.6%) ≥14 d after the first vaccine dose, but only 51.9% (95% CI, 47.0–56.4%) ≥14 d after the second dose, with 50% of fully vaccinated individuals receiving their second dose before 11 May 2021.
> Corresponding mRNA-1273 effectiveness ≥14 d after the first or second dose was 73.7% (95% CI, 58.1–83.5%) and 73.1% (95% CI, 67.5–77.8%), respectively.
> Notably, effectiveness against Delta-induced severe, critical or fatal disease was 93.4% (95% CI, 85.4–97.0%) for BNT162b2 and 96.1% (95% CI, 71.6–99.5%) for mRNA-1273 ≥14 d after the second dose.
These findings show robust effectiveness for both BNT162b2 and mRNA-1273 in preventing Delta hospitalization and death in Qatar’s population, despite lower effectiveness in preventing infection, particularly for the BNT162b2 vaccine. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Immunol. 02NOV2021 | BNT162b2 vaccination induces durable SARS-CoV-2 specific T cells with a stem cell memory phenotype | Herrera G., et al. Italy | Vaccines - Immunisation | **Aim:** to assess T cell responses to the Spike protein of SARS-CoV-2 in 71 healthy donors vaccinated with two doses of the Pfizer–BioNTech mRNA vaccine (BNT162b2) for up to 6 months after vaccination.
Methods: Longitudinal study looking at the T cell responses and Anti-Receptor-Binding Domain (RBD) antibodies in 71 health-care workers and scientists vaccinated with the BNT162b2 vaccine following the European Medicines Agency (EMA)-approved two-dose vaccination schedule, up to 6 months after the first dose.
Findings: > vaccination induced the development of a sustained anti-viral CD4+ and CD8+ T cell response. > Nearly all individuals harbored Spike-specific T cells at baseline, likely due to the presence of a pool of memory clones cross-reactive with other coronaviruses. > mRNA vaccination elicits a vigorous Th1-skewed response, with production of IFNγ, IL2, and TNFα by Spike-specific cells, and undetectable levels of IL4 and IL17. > CD4+ and CD8+ T cells appeared before the development of high antibody titers, displayed markers of immunological maturity and stem cell memory, survived the physiological contraction of the immune response and persisted for at least 6 months. **Vaccination with BNT162b2 elicits an immunologically competent and long-lived SARS-CoV-2-specific T cell population.** |
| Nature Med. 02NOV2021 | Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2 | Levine-Tiefenbrun M., et al. Israel | Vaccines - Immunisation | **Aim:** to analyse if decreased effectiveness of the vaccine in reducing viral loads is inherent to the Delta variant or is dependent on time from immunization.
Methods: Retrospective analysis of the RT–qPCR test measurements of three SARS-CoV-2 genes—E, N and RdRp (Allplex 2019-nCoV assay, Seegene)—from positive tests of patients at Maccabi Healthcare Services. With a focus on infections of adults over age 20 between 28 June and 9 September 2021, when Delta was the dominant variant in Israel (over 93%).
Findings: > 3,100 infections of unvaccinated, 12,934 BTIs of two-dose-vaccinated and 519 BTIs of booster-vaccinated individuals were identified. > Breakthrough infections BTIs in recently fully vaccinated individuals have lower viral loads than infections in unvaccinated individuals. > This effect starts to decline 2 months after vaccination and ultimately vanishes 6 months or longer after vaccination. > the effect of BNT162b2 on reducing BTI viral loads is restored after a booster dose. **BNT162b2 might decrease the infectiousness of BTIs even with the Delta variant, and that, although this protective effect declines with time, it can be restored, at least temporarily, with a third, booster, vaccine dose.** |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science 02NOV2021</td>
<td>Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant
Elliot P., et al. UK
gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>We assessed RT-PCR swab-positivity in the Real-time Assessment of Community Transmission-1 (REACT-1) study in England.</td>
<td>Findings
✓ We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages.
✓ Unvaccinated people were three times more likely than double-vaccinated people to test positive.
✓ However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England.
✓ Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination.</td>
</tr>
<tr>
<td>Clin Microbiol Infect. 02NOV2021</td>
<td>Timing of SARS-CoV-2 vaccination during the third trimester of pregnancy and transplacental antibody transfer: a prospective cohort study
Rottenstreich A., et al. Israel
gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to assess the impact of early versus late third-trimester maternal SARS-CoV-2 vaccination on transplacental transfer and neonatal levels of SARS-CoV-2 antibodies.</td>
<td>Results
✓ 171 parturients, median age 31 years (IQR 27–35 years); median gestational age 39±5 weeks (IQR 38±4–40±4 weeks), 83 (48.5%) were immunized in early third-trimester (first dose at 27–31 weeks) and 88 (51.5%) were immunized in late third trimester (first dose at 32–36 weeks).
✓ All mother–infant paired sera were positive for anti S- and anti-RBD-specific IgG.
✓ Anti-RBD-specific IgG concentrations in neonatal sera were higher following early versus late third-trimester vaccination (median 9620 AU/mL (IQR 5131–15332 AU/mL) versus 6697 AU/mL (IQR 3157–14731 AU/mL), p 0.02), and were positively correlated with increasing time since vaccination (r = 0.26; p 0.001).
✓ Median antibody placental transfer ratios were increased following early versus late third-trimester immunization (anti-S ratio: 1.3 (IQR 1.1–1.6) versus 0.9 (IQR 0.6–1.1); anti-RBD-specific ratio: 2.3 (IQR 1.7–3.0) versus 0.7 (IQR 0.5–1.2), p <0.001).
✓ Neutralizing antibodies placental transfer ratio was greater following early versus late third-trimester immunization (median 1.9 (IQR 1.7–2.5) versus 0.8 (IQR 0.5–1.1), p <0.001), and was positively associated with longer duration from vaccination (r = 0.77; p <0.001).
Early compared with late third-trimester maternal SARS-CoV-2 immunization enhanced transplacental antibody transfer and increased neonatal neutralizing antibody levels.</td>
</tr>
<tr>
<td>Nature Immunol. 29OCT2021</td>
<td>Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations
Dussupt V., et al. USA
gotopaper</td>
<td>Therapeutics</td>
<td>Aim: to identify neutralizing monoclonal antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein.</td>
<td>Results
✓ Several potent neutralizing mAb either against NTD or RBD were identified.
✓ Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human-ACE-2 mouse model, using both neutralization and Fc effector antibody functions.
✓ A 0.25 mg per kg body weight dose of the NTD mAb WRAIR-2039 used alone was sufficient to suppress viral replication in the lungs, confirming the high potency of NTD-directed mAbs in vivo, while the lowest protective dose for RBD mAb WRAIR-2123 was 1 mg per kg body weight.
✓ The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern.
✓ In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Nature Commun. 29OCT2021 | A live measles-vectored COVID-19 vaccine induces strong immunity and protection from SARS-CoV-2 challenge in mice and hamsters | Frantz P.N., et al. France [gotopaper](#) | Vaccines | Live measles-vectored COVID-19 vaccine expressing the Spike protein (Institut Pasteur) | 3 candidate antigens tested, including MV-ATU2-SF-2P-dER:
- Specific IgG against SARS-CoV-2 S is detected in 100% of immunised mice.
- MV-ATU2-SF-2P-dER induces a robust Th1-directed T-cell immune response
- Intranasal challenge: - Mice: SARS-CoV-2 viral RNA is detected in the lungs of immunised mice after challenge, but an average reduction of 2 log10 is observed in the ATU2 group (and 1 log10 in the ATU3 group) compared to the empty MV control group.
- Syrian hamster: All hamsters immunised with MV-ATU2-SF-2P-dER, challenged or not, show significantly higher neutralising antibody titres than convalescent human sera. These titers increase rapidly 4 days after challenge, indicating the effective establishment of immune memory. Immunisation with MV-ATU2-SF-2P-dER protects infected animals from lung pathology.
- The antibodies produced effectively neutralise all three currently circulating variants of SARS-CoV-2 in vitro.

These promising preclinical data support the development of this candidate. |
| Lancet Infect Dis. 28OCT2021 | Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study | Singanayagam A., et al. UK [gotopaper](#) | Public Health / Epidemiology | Aim: to investigate transmission and viral load kinetics in vaccinated and unvaccinated individuals with mild delta variant infection in the community.
Methods
- Analysis of transmission risk by vaccination status for 231 household and non-household contacts exposed to 162 epidemiologically linked delta variant-infected index cases.
- Comparison of viral load trajectories from fully vaccinated individuals with delta infection (n=29) with unvaccinated individuals with delta (n=16), alpha (B.1.1.7; n=39), and pre-alpha (n=49) infections.

Results
- The secondary attack rate (SAR) in household contacts exposed to the delta variant was 25% (95% CI 18–33) for fully vaccinated individuals compared with 38% (24–53) in unvaccinated individuals.
- The median time between second vaccine dose and study recruitment in fully vaccinated contacts was longer for infected individuals (median 101 days [IQR 74–120]) than for uninfected individuals (64 days [32–97], p=0.001).
- SAR among household contacts exposed to fully vaccinated index cases was similar to household contacts exposed to unvaccinated index cases (25% [95% CI 15–35] for vaccinated vs 23% [15–31] for unvaccinated).
- 12 (39%) of 31 infections in fully vaccinated household contacts arose from fully vaccinated epidemiologically linked index cases, further confirmed by genomic and virological analysis in 3 index case–contact pairs.
- Although peak viral load did not differ by vaccination status or variant type, it increased modestly with age (difference of 0.39 [95% credible interval −0.03 to 0.79] in peak log10 viral load per mL between those aged 10 years and 50 years).
- Fully vaccinated individuals with delta variant infection had a faster (posterior probability >0.84) mean rate of viral load decline (0.95 log10 copies per mL per day) than did unvaccinated individuals with pre-alpha (0.69), alpha (0.82), or delta (0.79) variant infections.
- Within individuals, faster viral load growth was correlated with higher peak viral load (correlation 0.42 [95% credible interval 0.13 to 0.65]) and slower decline (−0.44 [−0.67 to −0.18]).

Vaccination reduces the risk of delta variant infection and accelerates viral clearance. Nonetheless, fully vaccinated individuals with breakthrough infections have peak viral load similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>

Patients: adults with a known risk factor for progression to severe disease, infected with SARS-CoV-2 and symptomatic. Mean age 50 years (18-102).

Treatment: fluvoxamine 100 mg twice daily for 10 days (741 patients), or placebo (756).

Primary outcome: hospitalisation (retention in a COVID-19 emergency department >6h, or transfer to a tertiary hospital due to COVID-19) up to 28 days after randomisation.

Two statistical analyses: modified intention-to-treat (patients receiving at least 24 hours of treatment before a primary outcome event), per-protocol analysis (patients with >80% adherence).

> The proportion of patients progressing to the primary outcome was lower in the fluvoxamine group than in the placebo group (79 [11%] of 741 vs 119 [16%] of 756; relative risk [RR] 0.68; 95% Bayesian credible interval [BCI] 95%); 0.52-0.88). In total, 87% were hospitalisations.

> Results were similar in the modified intention-to-treat analysis (RR 0.69, 95% BCI 0.53-0.90) and greater in the per-protocol analysis (RR 0.34, 95% BCI 0.21-0.54).

> No significant differences in the number of treatment-emergent adverse events between patients in the fluvoxamine group and those in the placebo group.

Fluvoxamine treatment appears to be effective in high-risk outpatients with early diagnosis of COVID-19 |
| Clin Infect Dis. 28OCT2021 | A randomized, placebo-controlled clinical trial of bamlanivimab and etesevimab together in high-risk ambulatory patients with COVID-19 and validation of the prognostic value of persistently high viral load | Dougan M., et al. USA gotopaper | Therapeutics | **Aim:** to determine optimal dose and expand availability of treatment of lower doses of bamlanivimab and etesevimab together (700mg/1400mg).

Methods:
Phase 3 portion of the BLAZE-1 trial characterized the effect of bamlanivimab with etesevimab on overall patient clinical status and virologic outcomes in ambulatory patients ≥12 years old, with mild-to-moderate COVID-19, and ≥1 risk factor for progressing to severe COVID-19 and/or hospitalization.

Findings:
> 769 patients were infused (median age [range]; 56.0 years [12, 93], 30.3% of patients ≥65 years of age and median duration of symptoms; 4 days).

> By day 29, 4/511 patients (0.8%) in the antibody treatment group had a COVID-19-related hospitalized or any-cause death, as compared with 15/258 patients (5.8%) in the placebo group (Δ[95% CI]=-5.0 [-8.0, -2.1], p<0.001).

> No deaths occurred in the bamlanivimab and etesevimab group compared with 4 deaths (all COVID-19-related) in the placebo group.

> Patients receiving antibody treatment had a greater mean reduction in viral load from baseline to Day 7 (Δ[95% CI]=-0.99 [-1.33, -0.66], p<0.0001) compared with those receiving placebo.

> Persistently high viral load at Day 7 correlated with COVID-19-related hospitalization or any-cause death by Day 29 in all BLAZE-1 cohorts investigated.

These data support the use of bamlanivimab and etesevimab (700mg/1400mg) for ambulatory patients at high risk for severe COVID-19. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 28OCT2021 | Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in São Paulo | Hitchings M.D.T., et al. Brazil / USA [gotopaper](#) | Vaccines | **Aim:** To estimate ChAdOx1 effectiveness by dose against the primary endpoint of RT-PCR-confirmed Covid-19, and secondary endpoints of Covid-19 hospitalization and Covid-19-related death, in adults aged ≥60 years during an epidemic with high Gamma variant prevalence in São Paulo state, Brazil using a matched, test-negative case-control study.

Results
> Starting 28 days after the first dose, effectiveness of a single dose of ChAdOx1 is 33.4% (95% CI, 26.4–39.7) against Covid-19, 55.1% (95% CI, 46.6–62.2) against hospitalization, and 61.8% (95% CI, 48.9–71.4) against death.
> Starting 14 days after the second dose, effectiveness of the two-dose schedule is 77.9% (95% CI, 69.2–84.2) against Covid-19, 87.6% (95% CI, 78.2–92.9) against hospitalization, and 93.6% (95% CI, 81.9–97.7) against death.

Completion of the ChAdOx1 vaccine schedule affords significantly increased protection over a single dose against mild and severe Covid-19 outcomes in elderly individuals during widespread Gamma variant circulation. |
- Individuals receiving a third vaccine dose between July 30, 2020, and Sept 23, 2021, 5 months after the 2nd dose were matched (1:1) to demographically and clinically similar controls who did not receive a third dose.

Results
> The third dose and control groups each included 728 321 individuals. Median age of 52 years (IQR 37–68) and 51% were female. Median follow-up time was 13 days (IQR 6–21).
> Vaccine effectiveness evaluated 27 days after receipt of the third dose, compared with receiving only two doses at least 5 months ago, was estimated to be 93% (231 events for two doses vs 29 events for three doses; 95% CI 88–97) for admission to hospital, 92% (157 vs 17 events; 82–97) for severe disease, and 81% (44 vs seven events; 59–97) for COVID-19-related death.

A third dose of the BNT162b2 mRNA vaccine is effective in protecting individuals against severe COVID-19-related outcomes, compared with receiving only two doses at least 5 months ago. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet 27OCT2021</td>
<td>Non-pharmaceutical interventions, vaccination, and the SARS-CoV-2 delta variant in England: a mathematical modelling study</td>
<td>Sonabend R., et al. UK</td>
<td>Public Health / Epidemiology</td>
<td>In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories.</td>
</tr>
</tbody>
</table>
| | | | | **Findings** | > The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination.
> However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69–83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500–5700) peak daily hospital admissions under our central parameter scenario.
> Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700–1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness.
> Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. |
| Nature Med. 27OCT2021 | No causal effect of school closures in Japan on the spread of COVID-19 in spring 2020 | Fukumoto K., et al. Japon | Public Health / Epidemiology | To date, studies have not reached a consensus about the effectiveness of these policies at mitigating community transmission, partly because they lack rigorous causal inference. Here we assess the causal effect of school closures in Japan on reducing the spread of COVID-19 in spring 2020. |
| | | | | **Methods** | > By matching each municipality with open schools to a municipality with closed schools that is the most similar in terms of potential confounders, we can estimate how many cases the municipality with open schools would have had if it had closed its schools.
Findings | > We do not find any evidence that school closures in Japan reduced the spread of COVID-19. **Our null results suggest that policies on school closures should be reexamined given the potential negative consequences for children and parents.** |
| Nature Med. 27OCT2021 | The impact of school opening model on SARS-CoV-2 community incidence and mortality | Ertem, Z., et al. USA | Public Health / Epidemiology | We conducted an event study using a retrospective nationwide cohort evaluating the effect of school mode on SARS-CoV-2 cases during the 12 weeks after school opening (July–September 2020, before the Delta variant was predominant), stratified by US Census region. |
| | | | | **Findings** | > After controlling for case rate trends before school start, state-level mitigation measures and community activity level, SARS-CoV-2 incidence rates were not statistically different in counties with in-person learning versus remote school modes in most regions of the United States.
> In the South, there was a significant and sustained increase in cases per week among counties that opened in a hybrid or traditional mode versus remote, with weekly effects ranging from 9.8 (95% confidence interval (CI) = 2.7–16.1) to 21.3 (95% CI = 9.9–32.7) additional cases per 100,000 persons, driven by increasing cases among 0–9 year olds and adults.
> Schools can reopen for in-person learning without substantially increasing community case rates of SARS-CoV-2; however, the impacts are variable. **Additional studies are needed to elucidate the underlying reasons for the observed regional differences more fully.** |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEJM 28OCT2021</td>
<td>Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab</td>
<td>Gupta A., et al. USA go to paper</td>
<td>Therapeutics</td>
<td>Sotrovimab is a pan-sarbecovirus monoclonal antibody that was designed to prevent progression of Covid-19 in high-risk patients early in the course of disease (Vir Biotechnology and GlaxoSmithKline) - Phase 3 trial on nonhospitalized patients with symptomatic Covid-19 (55 days after the onset of symptoms) and at least one risk factor for disease progression. - Single infusion of sotrovimab at a dose of 500 mg or placebo. Primary efficacy outcome: hospitalization (for >24 h) for any cause or death within 29 days after randomization. Results > This prespecified interim analysis included 583 patients (291 in the sotrovimab group and 292 in the placebo group) > 3 patients (1%) in the sotrovimab group, as compared with 21 patients (7%) in the placebo group, had disease progression leading to hospitalization or death (relative risk reduction, 85%; 97.24% CI, 44 to 96; P=0.002). > In the placebo group, 5 patients were admitted to the intensive care unit, including 1 who died by day 29. > Safety was assessed in 868 patients (430 in the sotrovimab group and 438 in the placebo group). Adverse events were reported by 17% of the patients in the sotrovimab group and 19% of those in the placebo group; serious adverse events were less common with sotrovimab than with placebo (in 2% and 6% of the patients, respectively). Among high-risk patients with mild-to-moderate Covid-19, sotrovimab reduced the risk of disease progression.</td>
</tr>
<tr>
<td>NEJM 28OCT2021</td>
<td>Waning Immunity after the BNT162b2 Vaccine in Israel</td>
<td>Goldberg Y., et al. Israel go to paper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to evaluate the extent of waning immunity of the vaccine against the delta variant in Israel is unclear. - Poisson regression model to compare rates of confirmed SARS-CoV-2 infection and severe Covid-19 among persons vaccinated during different time periods, stratifying according to age group and adjusting for possible confounding factors. Results > Among persons 60 years of age or older, the rate of infection in the July 11–31 period was higher among persons who became fully vaccinated in January 2021 (when they were first eligible) than among those fully vaccinated 2 months later, in March (rate ratio, 1.6; 95% CI, 1.3 to 2.0). > Among persons 40 to 59 years of age, the rate ratio for infection among those fully vaccinated in February (when they were first eligible), as compared with 2 months later, in April, was 1.7 (95% CI, 1.4 to 2.1). > Among persons 16 to 39 years of age, the rate ratio for infection among those fully vaccinated in March (when they were first eligible), as compared with those fully vaccinated in February, was 1.8 (95% CI, 1.3 to 2.3). < The rate ratio for severe disease among persons fully vaccinated in the month when they were first eligible, as compared with those fully vaccinated in March, was 1.8 (95% CI, 1.1 to 2.9) among persons 60 years of age or older and 2.2 (95% CI, 0.6 to 7.7) among those 40 to 59 years of age; owing to small numbers, the rate ratio could not be calculated among persons 16 to 39 years of age. These findings indicate that immunity against the delta variant of SARS-CoV-2 waned in all age groups a few months after receipt of the second dose of vaccine.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Clin Microbiol Infect. 26OCT2021 | Dynamic SARS-CoV-2 specific B cell and T cell responses following immunization of an inactivated COVID-19 vaccine | Chen Y., et al. China gotopaper | Vaccines | **Aim:** to study the dynamic adaptive immune responses elicited by the inactivated virus vaccine, CoronaVac.
- 100 health care workers vaccinated with CoronaVac
- Time points: before vaccination (T1), 2 weeks after the first dose (T2), 2 weeks after the booster dose (T3), and 8-10 weeks post the booster dose (T4).
- SARS-CoV-2-specific antibodies, serum neutralizing activities, peripheral B cells, CD4+ and CD8+ T cells, and their memory subsets were simultaneously measured.
Results
> SARS-CoV-2 Spike-specific IgG responses reached the peak (geometric mean titer [GMT] 54827, 30969-97065) after two doses and rapidly declined (GMT 502, 212-1190) at T4, whereas suboptimal IgA responses were detected (GMT 5, 2-9).
> Spike-specific circulating B cells (0.60%, 0.46-0.73% of total B cells) and memory B cells (1.18%, 0.92-1.44% of total memory B cells) were effectively induced at T3 and sustained over time (0.33%, 0.23-0.43%; 0.87%, 0.05-1.67%, respectively).
> SARS-CoV-2-specific circulating CD4+ T cells (0.57%, 0.47-0.66%) and CD8+ T cells (1.29%, 1.04-1.54%) were detected at T3. At T4, 0.78% (0.43-1.20%) of memory CD4+ T cells and 0.68% (0.29-1.30%) of memory CD8+ T cells were identified as SARS-CoV-2 specific, while 0.62% (0.51-0.75%) of CD4+ T cells and 0.47% (0.38-0.58%) of CD8+ T cells were SARS-CoV-2 specific terminally differentiated effector memory cells.
> Age and interval between doses affected the magnitude of CoronaVac induced immune responses.
> SARS-CoV-2 memory CD4+ T cells was strongly associated with both RBD-specific memory B cells (r=0.87, p<0.0001) and SARS-CoV-2 specific memory CD8+ T cells (r=0.48, p<0.0001).
CoronaVac induced robust circulating and memory B cells and T cell responses. |
| Science 26OCT2021 | Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant | Zhang J., et al. USA gotopaper | Variants | **Aim:** to report the structure, function, and antigenicity of its full-length spike (S) trimer and those of the Gamma and Kappa variants and compare their characteristics with the G614, Alpha, and Beta variants.
Methods:
Characterization of the full-length S proteins of the Delta, Kappa, and Gamma variants, and determined their structures by cryogenic electron microscopy (cryo-EM).
Findings:
> Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2, and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility.
> Each variant shows different rearrangement of the antigenic surface of the N-terminal domain of the S protein, but only causes local changes in the receptor-binding domain (RBD), making the RBD a better target for therapeutic antibodies.
> The three strains studied show once again how different variants can use different strategies to remodel their NTD and evade host immunity.
> The overall structure of the RBD has been strictly preserved among all the variants and reoccurring surface mutations appear to be limited to a number of sites, consistent with its critical role in receptor binding.
Therapeutic antibodies or universal vaccines should not target the NTD since escaping from anti-NTD antibodies appears to have little cost to the virus. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Transl Med, 26OCT21 | **GRAd-COV2, a gorilla adenovirus-based candidate vaccine against COVID-19, is safe and immunogenic in younger and older adults** | Lanini S., et al. Italy [gotopaper](#) | Vaccines - Immunisation | **Aim:** To describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized pre-fusion SARS-CoV-2 spike protein, named GRAd-COV2; and assess the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group.
A phase 1, dose-escalation, open-label trial was conducted including 90 healthy participants, (45 aged 18 to 55 years and 45 aged 65 to 85 years), who received a single intramuscular administration of GRAd-COV2 at three escalating doses.
Results:
> Between August 11 and September 20, 2020, 181 potential volunteers were evaluated for eligibility. Volunteers were screened in excess for speed up enrollment and to comply with a strict staggering enrollment scheme.
> Of the 181 participants screened, 91 (45 in the younger adult cohort aged 18 to 55 and 46 in the older adult cohort, aged 65 to 85) were vaccinated.
> A single intramuscular administration of GRAd-COV2 was well-tolerated at all doses and in both cohorts.
> Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported.
> Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants.
> Consistently, neutralizing antibodies were detected in 42 of 44 younger age and 45 of 45 older age volunteers. In addition, GRAd-COV2 induced a robust and Th1-skewed T cell response against the spike protein in 89 of 90 participants from both age groups.

The safety and immunogenicity data from the phase 1 trial support further development of this vaccine. |
- Multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset.
- The cohort included 47 “critical” (in the intensive care unit under mechanical ventilation) and 25 “non-critical” (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals.
Results:
> Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology.
> Among differentially expressed genes, up-regulation of the metalloprotease ADAM9 was observed. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19, and were further confirmed at the transcriptional and protein level as well as by proteolytic activity.
> Ex vivo ADAM9 inhibition decreased SARS-CoV-2 uptake and replication in human lung epithelial cells.

Within a young, otherwise healthy, cohort of individuals with COVID-19, a unique gene signature differentiated critical from non-critical patients. ADAM9 was identified as a driver of disease severity and a candidate therapeutic target. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Med. 25OCT2021</td>
<td>Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection</td>
<td>Patone M., et al. UK</td>
<td>Vaccines</td>
<td>We undertook a self-controlled case series study to investigate hospital admissions from neurological complications in the 28 days after a first dose of ChAdOx1nCoV-19 (n = 20,417,752) or BNT162b2 (n = 12,134,782), and after a SARS-CoV-2-positive test (n = 2,005,280).</td>
</tr>
</tbody>
</table>

Findings

> There was an increased risk of Guillain–Barré syndrome (incidence rate ratio (IRR), 2.90; 95% confidence interval (CI): 2.15–3.92 at 15–21 days after vaccination) and Bell’s palsy (IRR, 1.29; 95% CI: 1.08–1.56 at 15–21 days) with ChAdOx1nCoV-19.
> There was an increased risk of hemorrhagic stroke (IRR, 1.38; 95% CI: 1.12–1.71 at 15–21 days) with BNT162b2.
> An independent Scottish cohort provided further support for the association between ChAdOx1nCoV and Guillain–Barré syndrome (IRR, 2.32; 95% CI: 1.08–5.02 at 1–28 days).> There was a substantially higher risk of all neurological outcomes in the 28 days after a positive SARS-CoV-2 test including Guillain–Barré syndrome (IRR, 5.25; 95% CI: 3.00–9.18).
> Overall, we estimated 38 excess cases of Guillain–Barré syndrome per 10 million people receiving ChAdOx1nCoV-19 and 145 excess cases per 10 million people after a positive SARS-CoV-2 test.

> In summary, although we find an increased risk of neurological complications in those who received COVID-19 vaccines, the risk of these complications is greater following a positive SARS-CoV-2 test.

| Science 22OCT2021 | Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells | Mateus J., et al. USA | Vaccines - Immunisation | Aim: to examine vaccine-specific CD4+ T cell, CD8+ T cell, binding antibody, and neutralizing antibody responses to the 25-mg Moderna messenger RNA (mRNA)–1273 vaccine over the course of 7 months after immunization. |

Methods:
Clinical trial comparing patients who received a 25-μg mRNA-1273 (Moderna) COVID-19 vaccine to 100-μg mRNA-1273 COVID-19 vaccinees and SARS CoV-2–infected individuals, with a particular interest in assessing whether preexisting cross-reactive T cell memory affects vaccine-generated immunity.

Findings:

> Vaccine-generated spike-specific memory CD4+ T cells 6 months after the second dose of the vaccine were comparable in quantity and quality to COVID-19 cases, including the presence of T follicular helper cells and interferon-γ–expressing cells.
> Spike-specific CD8+ T cells were generated in 88% of subjects, with equivalent memory at 6 months post-boost compared with COVID-19 cases.
> Subjects with preexisting cross-reactive CD4+ T cell memory exhibited stronger CD4+ T cell and antibody responses to the vaccine, demonstrating the biological relevance of severe acute respiratory syndrome coronavirus 2–cross-reactive CD4+ T cells.

These findings show substantial immune responses and immune memory to a low-dose mRNA vaccine and indicate biological relevance of cross-reactive memory T cells.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| JAMA 21OCT2021 | Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia The COVID STEROID 2 Randomized Trial | Perner A., et al. Denmark [gotopaper](#) | Therapeutics | **Aim:** To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia.
A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021.
Results:
> Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group).
> The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0.2-2.6 days]; P = .07).
> Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]).
> Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]).
> Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]).
Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. |
| Nature 20OCT2021 | Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants | Andreano E., et al. Italy [gotopaper](#) | Immunology | **Aim:** To dissect the nature of the B cell and antibody response by analysing at single-cell level the memory B cells of 5 naive and 5 convalescent people vaccinated with the BNT162b2 mRNA vaccine.
> Almost 6 000 cells were sorted, over 3 000 of them produced monoclonal antibodies against the spike protein and more than 400 neutralized the original Wuhan SARS-CoV-2 virus.
> The B.1.351 (Beta) and B.1.1.248 (Gamma) variants showed to escape almost 70% of these antibodies while a much smaller portion was impacted by the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants.
> The overall loss of neutralization was always significantly higher in the antibodies from naive people. In part this was due to the IGHV2-5;IGHJ4 germline, which was found only in convalescent people and generated potent and broadly neutralizing antibodies.
People that are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control SARS-CoV-2 emerging variants. |
| PNAS 20OCT2021 | An ultra-low-cost electroporator with microneedle electrodes (ePatch) for SARS-CoV-2 vaccination | Xia D, et al. USA [gotopaper](#) | Vaccines | **DNA vaccines are inexpensive, rapidly developed, and safe, but require bulky and expensive electroporation devices for effective vaccination, which presents challenges to affordable and mass vaccination**
Findings
> We developed an ultra-low-cost (<1 USD), handheld (<50 g), battery-free electroporation system combining a thumb-acted piezoelectric pulser and a microneedle electrode array skin interface for DNA vaccination against COVID-19, which was shown to be immunogenic and well-tolerated in animal studies
This study provides a proof-of-concept that DNA vaccination against epidemics can be achieved using an ultra-low-cost electroporator that is inexpensive enough for single use and robust enough for repeated use if desired. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 20OCT2021 | BNT162b2 and ChAdOx1 nCoV-19 Vaccine Effectiveness against Death from the Delta Variant | Sheikh A., et al. UK [gotopaper](#) | Vaccines - Immunisation | Aim: to report on effectiveness of BNT162b2 et ChAdOx1 against death from infection with SARS-CoV-2 delta variant. Complement to the previous study from the same group on effectiveness against infection and hospitalisation.
> Mortality analysis on 114,706 adults who tested positive for SARS-CoV-2, of which 98.8% were due to delta variant. Unvaccinated individuals tended to be younger, with fewer coexisting conditions, of a lower socioeconomic status, and more likely to be men than vaccinated ones.
> 201 deaths from Covid-19 overall
> 16-39 years of age: no deaths occurred among those who were fully vaccinated, as compared with 17 deaths among those who were unvaccinated.
> 40-59 years of age: vaccine effectiveness against death from Covid-19 was 88% (95% CI, 76 to 93) for ChAdOx1 nCoV-19 and 95% (95% CI, 79 to 99) for BNT162b2
> ≥60 years of age: vaccine effectiveness against death from the delta variant ≥14 days after the second vaccine dose was 90% (95% CI, 84 to 94) for BNT162b2 and 91% (95% CI, 86 to 94) for ChAdOx1 nCoV-19.

In summary, BNT162b2 and ChAdOx1 nCoV-19 vaccines offered substantial protection against death from Covid-19 caused by the delta variant. |
| NEJM 20OCT2021 | Effectiveness of BNT162b2 Vaccine against Delta Variant in Adolescents | Reis B.Y., et al. Israel / USA [gotopaper](#) | Vaccines - Immunisation | Aim: to estimate the vaccine effectiveness of BNT162b2 against the delta variant among vaccinated adolescents.
> 94,354 of these vaccine recipients were matched with 94,354 unvaccinated controls.
> The estimated vaccine effectiveness against documented SARS-CoV-2 infection was 59% (95% CI, 52 to 65) on days 14 through 20 after the first dose, 66% (95% CI, 59 to 72) on days 21 to 27 after the first dose, and 90% (95% CI, 88 to 92) on days 7 to 21 after the second dose.
> The estimated vaccine effectiveness against symptomatic Covid-19 was 57% (95% CI, 39 to 71) on days 14 to 20 after the first dose, 82% (95% CI, 73 to 91) on days 21 to 27 after the first dose, and 93% (95% CI, 88 to 97) on days 7 to 21 after the second dose.

BNT162b2 mRNA vaccine was highly effective in the first few weeks after vaccination against both documented infection and symptomatic Covid-19 with the delta variant among adolescents between the ages of 12 and 18 years. |
- Case–control study with data from Norwegian registries on first-trimester pregnancies, Covid-19 vaccination, background characteristics, and underlying health conditions.
- Women were identified as having had a miscarriage before 14 weeks of gestation (case patients) and having a confirmation of ongoing pregnancy in the first trimester (controls). Patients and controls were not matched according to gestational age.
> Among 13,956 women with ongoing pregnancies (of whom 5.5% were vaccinated) and 4521 women with miscarriages (of whom 5.1% were vaccinated), the median number of days between vaccination and miscarriage or confirmation of ongoing pregnancy was 19.
> Among women with miscarriages, the adjusted odds ratios for Covid-19 vaccination were 0.91 (95% CI, 0.75 to 1.10) for vaccination in the previous 3 weeks and 0.81 (95% CI, 0.69 to 0.95) for vaccination in the previous 5 weeks.
> Results were similar in an analysis that included all available vaccine types, in an analysis stratified according to the number of doses received, and in sensitivity analyses limited to health care personnel or women with at least 8 weeks of follow-up after confirmed pregnancy.
No evidence of an increased risk for early pregnancy loss after Covid-19 vaccination were found. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 20OCT2021 | COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models | Maisonnasse P., et al. France / Netherlands [gotopaper](#) | Therapeutics | **Aim:** to evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate.
Methods: Three different experimental models as well as mathematical modeling were used to demonstrate that COVA1-18 rapid and extensive biodistribution is associated with a very potent antiviral effect.
Results:
> In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice.
> Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters.
> When administered at 10 mg kg⁻¹ one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments.
> Using a mathematical model, the authors estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions.
COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation. COVA1-18 could be used in patients at low doses either to prevent infection or to reduce viral loads in a therapeutic setting, with a potential greater impact in high-risk patients. |
| Science Transl Med. 19OCT2021 | COVID-19 mRNA vaccines drive differential antibody Fc-functional profiles in pregnant, lactating, and non-pregnant women | Atyeo C., et al. USA [gotopaper](#) | Vaccines | **Aim:** To define potential changes in vaccine response during pregnancy and lactation
Methods: Deep sequencing of the humoral vaccine response in a group of pregnant and lactating women and non-pregnant age-matched controls was performed.
Results:
> Vaccine-specific titers were comparable between pregnant women, lactating women, and non-pregnant controls.
> However, Fc receptor (FcR)-binding and antibody effector functions were induced with delayed kinetics in both pregnant and lactating women compared to non-pregnant women after the first vaccine dose, which normalized after the second dose.
> Vaccine boosting resulted in high FcR-binding titers in breastmilk.
> These findings highlights the importance of defining the immunology of pregnancy to develop evidence-based recommendations for vaccine recommendations.
Pregnancy promotes resistance to generating pro-inflammatory antibodies and indicates that there is a critical need to follow prime-boost timelines in this vulnerable population to ensure full immunity is attained. |
> 496 (2.8%) of 17,911 French adult outpatients were PCR-positive for an upper respiratory tract SARS-CoV-2 RNA, of which 180 (36.3%) were COVID-19 asymptomatic.
> Of adult asymptomatic viral shedders, 75% had mean to high RNA viral loads (Ct values < 30) which median value was significantly higher than that observed in symptomatic subjects (P = 0.029).
> Of adult asymptomatic viral shedders, 50.6% were positive by cell culture assays of their upper respiratory tract specimens.
COVID-19 asymptomatic adult outpatients are significant viable SARS-CoV-2 shedders in their upper respiratory tract playing a major potential role as SARS-CoV-2 transmitters. |
Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

Authors and link
- RECOVERY Collaborative Group
- UK
- gotopaper

Field of expertise
- Therapeutics

Aim: To evaluate the efficacy and safety of colchicine in patients admitted to hospital with COVID-19.

Methods:
- Randomised, controlled, open-label trial (177 hospitals in the UK, two in Indonesia, and two in Nepal), several treatments were compared with usual care in patients hospitalised with COVID-19.

Results:
- Between Nov 27, 2020, and March 4, 2021, 11 340 (58%) of 19 423 patients enrolled into the RECOVERY trial were eligible to receive colchicine; 5610 (49%) patients were randomly assigned to the colchicine group and 5730 (51%) to the usual care group.
 - 1173 (21%) patients in the colchicine group and 1190 (21%) patients in the usual care group died within 28 days (rate ratio 1·01 [95% CI 0·93 to 1·10]; p=0·77).
 - Median time to discharge alive (10 days [IQR 5 to >28]) was the same in both groups, and there was no significant difference in the proportion of patients discharged from hospital alive within 28 days (3901 [70%] patients in the colchicine group and 4032 [70%] usual care group; rate ratio 0·98 [95% CI 0·94 to 1·03]; p=0·44).
 - In those not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (1344 [25%] in the colchicine group vs 1343 [25%] patients in the usual care group; risk ratio 1·02 [95% CI 0·96 to 1·09]; p=0·47).

In adults hospitalised with COVID-19, colchicine was not associated with reductions in 28-day mortality, duration of hospital stay, or risk of progressing to invasive mechanical ventilation or death.

Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine

Authors and link
- Payne R. P., et al.
- Thailand / UK
- gotopaper

Field of expertise
- Vaccines

Aim: To demonstrate the impact of extended dosing intervals on BNT162b2 mRNA vaccine effectiveness against infection

Methods:
- Data from the entire SIREN cohort was analyzed. This study undertook clinical follow-up of 25,066 healthcare workers (HCWs) between 7 December to 12 March 2021 with asymptomatic screening by PCR over a period of up to 95 days (13.6 weeks) from the first dose of BNT162b2. At this time, the alpha (B.1.1.7) variant was the dominant circulating virus in the UK. These data are derived from prospective follow up of the cohort.

Results:
- 589 participants received two doses of the BNT162b2 Pfizer/BioNTech vaccine between 09 December 2020 and 23 May 2021 in 5 UK National Health Service (NHS) Hospital centres, with the majority undergoing the extended dosing schedule.
 - The median age was 43 years (IQR 32-52, range 21-71) with 73% (431) female, reflecting the demographics of the parent SIREN study.
 - The vaccine dosing interval was either the conventional “short” 2-5 week interval (n=86, median 24 days, IQR 21-27, range 14-35), or a “long” 6-14 week interval (n=503, median 71 days, IQR 64-77, range 45-105).
 - A clear humoral response against the vaccine strain virus is induced by a single dose of vaccine across the cohort, although with NABs at relatively low levels, especially against the beta variant and delta variants. The peak NAB response following priming is followed by a decline during the extended dose interval, most marked in naïve individuals, with a subsequent boost after the second dose.
 - BNT162b2 vaccine with an extended interval between doses is highly protective
 - Antibody levels were higher after the extended regimen compared to the short regimen
 - The extended regimen enriches for virus-specific CD4+ T cells expressing IL-2
 - Antibody levels wane after each dose but B and T cell pools are maintained

The immunogenicity of longer regimens appears robust, and indeed for antibody 467 measurements, improved over the conventional 3-4 week regimen.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
The authors presents broad-spectrum inhibitory activity across coronaviral 3CL proteases, in vitro and in vivo antiviral activity in a coronavirus animal model, and absorption, distribution, metabolism, excretion (ADME) and safety data
Results:
> PF-00835231 exhibits high selectivity over human proteases, acts as a broad-spectrum coronavirus 3CL protease inhibitor, and demonstrates potent antiviral activity in vivo.
> PF-00835231 has additive/synergistic activity in combination with remdesivir.
> PF-00835231 has similar potency against either SARS-CoV or SARS-CoV-2.
> Overall, PF-07304814 exhibits an encouraging preclinical profile that has the ADME, safety, and once converted to PF-00835231, SARS-CoV-2 antiviral activity to support progression to the clinic as a COVID-19 single-agent antiviral treatment, with potential for further additional benefit in combination with antivirals that target other critical stages of the coronavirus life cycle. |
| NEJM 15OCT2021 | Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines | Collier A.Y., et al USA [gotopaper](#) | Immunology | **Aim:** to report comparative kinetics of humoral and cellular immune responses elicited by the two-dose BNT162b2 vaccine (n=31), the two-dose mRNA-1273 vaccine (n=22), and the one-dose Ad26.COV2.S vaccine (n=8) up to 8 months after vaccination.
BNT162b2
- At peak immunity: high median live-virus neutralizing antibody titer (1789), high median pseudovirus neutralizing antibody titer (700), high median binding antibody titer against RBD (21,564).
- These titers declined sharply by 6 months after vaccination, and declined further by 8 months. Titers were lower than the peak titers by a factor of 34, 4, and 29, respectively.
mRNA-1273
- At peak immunity, high median live-virus neutralizing antibody titer (5848), pseudovirus neutralizing antibody titer (1569), and RBD-specific binding antibody titer (25,677).
- By 8 months, titers were lower than the peak titers by a factor of 44, 6, and 17, respectively.
Ad26.COV2.S
- Induced substantially lower median titers than the mRNA vaccines at peak immunity. At 4 weeks: median live-virus neutralizing antibody titer was 146, median pseudovirus neutralizing antibody titer was 391, median RBD-specific binding antibody titer was 1361.
- These titers remained relatively stable over 8 months.
> The same specific antibody responses at 8 months are observed against SARS-CoV-2 variants.
> At 8 months, the median pseudovirus neutralizing antibody titers against delta variant were similar with the BNT162b2 vaccine (67), the mRNA-1273 vaccine (76), and the Ad26.COV2.S vaccine (107).
> At 8 months, the median CD8+ T-cell responses were 0.016% with the BNT162b2 vaccine, 0.017% with the mRNA-1273 vaccine, and 0.12% with the Ad26.COV2.S vaccine. With all three vaccines, T-cell responses showed broad cross-reactivity against SARS-CoV-2 variants.
These data show differential kinetics of immune responses induced by the mRNA and Ad26.COV2.S vaccines over an 8-month follow-up period. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 14OCT2021 | Genomic reconstruction of the SARS-CoV-2 epidemic in England | Vöhringer H.S., et al. UK gotopaper | Virology | **Aim:** to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities through genomic surveillance (Sept 2020 – June 2021)
Series of sub-epidemics over the study period:
> **Early autumn 2020:** a series of sub-epidemics of B.1.177, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage
> **3rd wave** (Dec 2020-Feb 2021): almost exclusively Alpha variant (transmission advantage due to N501Y and P681H mutations)
> **Early March 2021:** Lockdown and infection and vaccine immunity led to contraction of epidemic. Most of lineages had been eliminated (from peak of 133 to 22)
> **In parallel,** import or emergence of VOC B.1.351/Beta and P.1/Gamma (N501Y, K417N/T, E484K – immune escape) – local outbreaks
> **April-June 2021:** rise of B.1.617.2/Delta (L452R, P681H), reaching 98% frequency. Evidence of higher transmissibility: fast growth in younger, unvaccinated age groups, elevated secondary attack rates, a higher viral load. |
| Nature Med. 14OCT2021 | Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK | Pouwels K. B., et al. UK gotopaper | Vaccines | We investigated the effectiveness of these vaccines in a large, community-based survey of randomly selected households across the United Kingdom
Findings:
> We found that the effectiveness of BNT162b2 and ChAdOx1 against infections (new polymerase chain reaction (PCR)-positive cases) with symptoms or high viral burden is reduced with the B.1.617.2 variant (absolute difference of 10–13% for BNT162b2 and 16% for ChAdOx1) compared to the B.1.1.7 (Alpha) variant.
> The effectiveness of two doses remains at least as great as protection afforded by prior natural infection.
> The dynamics of immunity after second doses differed significantly between BNT162b2 and ChAdOx1, with greater initial effectiveness against new PCR-positive cases but faster declines in protection against high viral burden and symptomatic infection with BNT162b2.
> There was no evidence that effectiveness varied by dosing interval, but protection was higher in vaccinated individuals after a prior infection and in younger adults.
> With B.1.617.2, infections occurring after two vaccinations had similar peak viral burden as those in unvaccinated individuals. SARS-CoV-2 vaccination still reduces new infections, but effectiveness and attenuation of peak viral burden are reduced with B.1.617.2. |
| Science Immunol. 14OCT2021 | Fractionating a COVID-19 Ad5-vectored vaccine improves virus-specific immunity | Sanchez S., et al. UK gotopaper | Vaccines | We performed mechanistic studies in mice to understand how the priming dose of an adenovirus-based SARS-CoV-2 vaccine affects long-term immunity to SARS-CoV-2.
Method:
> We first primed C57BL/6 mice with an adenovirus serotype 5 vaccine encoding the SARS-CoV-2 spike protein, similar to that used in the CanSino and Sputnik V vaccines.
> The vaccine prime was administered either at a standard dose or 1000-fold lower dose, followed by a boost with the standard dose four weeks later.
Findings:
> Initially, the low dose prime induced lower immune responses relative to the standard dose prime. However, the low dose prime elicited immune responses that were qualitatively superior, and upon boosting, exhibited significantly more potent recall and functional capacity
> We also report similar effects with a simian immunodeficiency virus (SIV) vaccine
These findings show an unexpected advantage of fractionating vaccine prime doses, warranting a re-evaluation of vaccine trial protocols for SARS-CoV-2 and other pathogens. |
mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern

Science 14OCT2021

Goel R.R., *et al.*

UK

Field of expertise: Immunology

Key facts: We longitudinally profiled vaccine responses in SARS-CoV-2 naïve and recovered individuals for 6 months after vaccination.

Findings:
- Antibodies declined from peak levels but remained detectable in most subjects at 6 months.
- We found mRNA vaccines generated functional memory B cells that increased from 3-6 months post-vaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity.
- Recall responses to vaccination in individuals with pre-existing immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and variants for at least 6 months after mRNA vaccination.

Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan

Lancet Respir Med. 13OCT2021

Taiwan

Field of expertise: Vaccines

Key facts: MVC-COV1901 has a good safety profile and elicits promising immunogenicity responses. These data support MVC-COV1901 to enter phase 3 efficacy trials.

Aim: To assess the safety and immunogenicity of MVC-COV1901 vaccine compared to placebo in participants who are generally healthy or with stable pre-existing health conditions.

Methods:
This is a large-scale, double-blind, randomised, placebo-controlled phase 2 trial done at ten medical centres and one regional hospital in Taiwan.

Results:
- Of 4173 individuals screened between Dec 30, 2020, and April 2, 2021, 3854 were enrolled and randomly assigned: 3304 to the MVC-COV1901 group and 550 to the placebo group.
- A total of 3844 participants (3295 in the MVC-COV1901 group and 549 in the placebo group) were included in the safety analysis set, and 1053 participants (903 and 150) had received both doses and were included in the per-protocol immunogenicity analysis set.
- From the start of this phase 2 trial to the time of interim analysis, no vaccine-related serious adverse events were recorded. The most common solicited adverse events in all study participants were pain at the injection site (2346 [71·2%] of 3295 in the MVC-COV1901 group and 128 [23·3%] of 549 in the placebo group), and malaise or fatigue (1186 [36·0%] and 163 [29·7%]).
- Fever was rarely reported (23 [0·7%] and two [0·4%]). At 28 days after the second dose of MVC-COV1901, the wild-type SARS-CoV-2 neutralising antibody GMT was 662·3 (95% CI 628·7–697·8; 408·5 IU/mL), the GMT ratio (geometric mean fold increase in titres at day 57 vs baseline) was 163·2 (155·0–171·9), and the seroconversion rate was 99·8% (95% CI 99·2–100·0).

MVC-COV1901 has a good safety profile and elicits promising immunogenicity responses. These data support MVC-COV1901 to enter phase 3 efficacy trials.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 11OCT2021 | Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity | Lucas C., et al. USA [gotopaper](#) | Vaccines - Immunisation | **Aim:** to analyse the development of anti-SARS-CoV-2 antibody and T cell responses in previously infected (recovered) or uninfected (naive) individuals that received mRNA vaccines to SARS-CoV-2.
 Methods:
The impact of SARS-CoV-2 variants containing many different key S gene mutations in mRNA-vaccinated individuals was examined using a comprehensive set of full-length authentic SARS-CoV-2 isolates.
 Results:
> While previously infected individuals sustained higher antibody titres than uninfected individuals post-vaccination, the latter reached comparable levels of neutralization responses to the ancestral strain after the second vaccine dose.
> T cell activation markers measured upon spike or nucleocapsid peptide in vitro stimulation showed a progressive increase after vaccination.
> Comprehensive analysis of plasma neutralization using 16 authentic isolates of distinct locally circulating SARS-CoV-2 variants revealed a range of reduction in the neutralization capacity associated with specific mutations in the spike gene: lineages with E484K and N501Y/T (e.g., B.1.351 and P.1) had the greatest reduction, followed by lineages with L452R (e.g., B.1.617.2).
> Plasma from previously infected vaccinated individuals displayed overall better neutralization capacity when compared to plasma from uninfected individuals that also received two vaccine doses.

Vaccine boosters could be a relevant future strategy to alleviate the impact of emerging variants on antibody neutralizing activity. |
| Science 08OCT2021 | Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination | Loyal L., et al. Germany [gotopaper](#) | Immunology | **Aim:** to investigate the functional role of preexisting SARS-CoV-2–cross-reactive and HCoV-reactive CD4+ T cells with high resolution.
 Methods:
CD4+ T cells of 60 unexposed healthy donors and 59 COVID-19 convalescents as controls were stimulated with peptide pools covering all open reading frames (ORFs) of SARS-CoV-2.
 Results:
> Human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age.
> The authors identified a universal immunodominant coronavirus peptide located within the fusion peptide domain of spike (S816–830) recognized by CD4+ T cells in 20% of unexposed individuals, 50 to 60% of SARS-CoV-2 convalescents, and 97% of BNT162b2-vaccinated individuals.
> S816–830– and spike–cross-reactive T cells were recruited in immune responses to SARS-CoV-2 infection and BNT162b2 COVID-19 mRNA vaccination.
> S816–830-reactive T cells initially contributed up to 100% of the S-I–reactive CD4+ T cells but their proportion decreased during the course of the S-II–specific immune response.
> Upon primary vaccination, cross-reactive cellular and humoral immunity exhibited kinetics typical for secondary immune responses.

Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
- Reports of presumptive GBS were identified in a US passive reporting system (VAERS) February-July 2021 and characterized, including demographics, clinical characteristics, and relevant medical history.

Results:
- Within the US Vaccine Adverse Event Reporting System (VAERS), 130 cases of presumptive GBS were reported from February 2021 to July 2021.
- The median time to onset of GBS following vaccination was 13 days (IQR, 10-18 days), with 105 cases (81.4%) beginning within 21 days and 123 (95.3%) within 42 days.
- One hundred twenty-one reports (93.1%) were serious, including 1 death.
- There was a male predominance, and most affected individuals were younger than 65 years.
- Most cases began within 21 days after vaccination, and nearly all began within 42 days.

These findings suggest a potential small but statistically significant safety concern for GBS following receipt of the Ad26.COV2.S vaccine. However, the findings are subject to the limitations of passive reporting systems and presumptive case definition, and they must be considered preliminary pending analysis of medical records to establish a definitive diagnosis. |
| **Clin Microbiol Infect. 07OCT2021** | A new SARS-CoV-2 variant poorly detected by RT-PCR on nasopharyngeal samples, with high lethality: an observational study | Fillâtre P., et al. France gotopaper | Variants | **Aim:** To analyze the characteristics and outcomes of COVID-19 cases related to the novel SARS-CoV-2 variant: B.1.616.
- In early January 2021, an outbreak of nosocomial cases of COVID-19 emerged in Western France, with RT-PCR tests repeatedly negative on nasopharyngeal samples but positive on lower respiratory tract samples. Whole genome sequencing (WGS) revealed a new variant, currently defining a novel SARS-CoV-2 lineage: B.1.616. In March, WHO classified this variant as ‘under investigation’ (VUI).
- This is a retrospective cohort study of all patients who were diagnosed with SARS-CoV-2 infection at the Lannion and Saint-Brieuc hospitals from January 1st to March 24th, 2021.

Results:
- From January 1st to March 24th, 2021, 114 patients fulfilled inclusion criteria: B.1.616 (n=39), VOC (n=32), and unknown (n=43).
- B.1.616-related cases were older than VOC-related cases (81 years interquartile range [IQR] [73-88], vs 73 years IQR [67-82], P<0.05) and their first RT-PCR tests were rarely positive (6/39, 15% vs 31/32, 97%, P<0.05).
- B.1.616 variant was independently associated with severe disease (multivariable Cox model HR 4.0 95% CI [1.5-10.9]), and increased lethality: 28-day mortality 18/39 (46%) for B.1.616, vs. 5/32 (16%) for VOC, P=0.006.

This study reports a nosocomial outbreak of COVID-19 cases related to a new variant, B.1.616, poorly detected by RT-PCR on nasopharyngeal samples, with high lethality. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Immunol. 06OCT2021 | The legacy of maternal SARS-CoV-2 infection on the immunology of the neonate | Gee S., et al. UK gotopaper | Immunology | **Aim:** to characterize the immunology of neonates born to mothers with confirmed SARS-CoV-2 infection during pregnancy.
> Maternal SARS-CoV-2 infection affects the neonatal immune system.
> Neonates born to mothers with recent or ongoing infection compared with those born to recovered or uninfected mothers have similar proportions of B cells, CD4+ T cells and CD8+ T cells, but increased percentages of natural killer cells, Vδ2+ γδ T cells and regulatory T cells.
> Increased plasma cytokine levels were also evident in neonates and mothers within the recent or ongoing infection group.
> Cytokine functionality was enhanced in neonates born to SARS-CoV-2-exposed mothers, compared to those born to uninfected mothers.
> In most neonates, this immune imprinting was nonspecific, suggesting vertical transmission of SARS-CoV-2 is limited, a finding supported by a lack of SARS-CoV-2-specific IgM in neonates despite maternal IgG transfer.

> These findings are suggestive of an immunological legacy imprinted on the neonate following maternal SARS-CoV-2 exposure. |
| Nature Commun. 06OCT2021 | Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil | Costa Clemens S.A., et al. Brazil / UK gotopaper | Vaccines | **Aim:** to investigate the efficacy of ChAdOx1 nCoV-19 (AZD1222) against symptomatic COVID-19 in a post-hoc exploratory analysis of a Phase 3 randomised trial in Brazil.
Methods: nose and throat swabs were tested by PCR in symptomatic participants. Sequencing and genotyping of swabs were performed to determine the lineages of SARS-CoV-2 circulating during the study.
Results
> Protection against any symptomatic COVID-19 caused by the Zeta (P.2) variant was assessed in 153 cases with vaccine efficacy (VE) of 69% (95% CI 55, 78).
> 49 cases of B.1.1.28 occurred and VE was 73% (46, 86).
> The Gamma (P.1) variant arose later in the trial and fewer cases (N = 18) were available for analysis. VE was 64% (~2, 87).
> ChAdOx1 nCoV-19 provided 95% protection (95% CI 61%, 99%) against hospitalisation due to COVID-19.

In summary, we report that ChAdOx1 nCoV-19 protects against emerging variants in Brazil despite the presence of the spike protein mutation E484K. |
| Clin Infect Dis. 05OCT2021 | One-year sustained cellular and humoral immunities of COVID-19 convalescents | Zhang J., et al. China gotopaper | Immunology | **Aim:** To better understand the features of immune memory in individuals with different disease severities at one year post-disease onset.
Methods:
Cohort study. Systematic antigen-specific immune evaluation in 101 COVID-19 convalescents, who had asymptomatic, mild, moderate, or severe disease, through two visits at months 6 and 12 post-disease onset.
Results
> SARS-CoV-2-specific IgG antibodies, and also NAb can persist among over 95% COVID-19 convalescents from 6 months to 12 months after disease onset.
> At least 19/71 (26%) of COVID-19 convalescents (double positive in ELISA and MCLIA) had detectable circulating IgM antibody against SARS-CoV-2 at 12m post-disease onset.
> Notably, the percentages of convalescents with positive SARS-CoV-2-specific T-cell responses (at least one of the SARS-CoV-2 antigen S1, S2, M and N protein) were 71/76 (93%) and 67/73 (92%) at 6m and 12m, respectively.
> Both antibody and T-cell memory levels of the convalescents were positively associated with their disease severity. SARS-CoV-2-specific cellular and humoral immunities are durable at least until one year after disease onset. |
Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months

Levin E.G., et al.

Israel [gotopaper](https://www.nejm.org/doi/10.1056/NEJMoa2113328)

Vaccines - Immunisation

Aim: To understand whether the increasing incidence of SARS-CoV-2 infections in Israel is due to waning immunity after the receipt of two doses of the BNT162b2 vaccine.

- 6-month longitudinal prospective study on vaccinated health care workers who were tested monthly for the presence of anti-spike IgG and neutralizing antibodies
- Linear mixed models were used to assess the dynamics of antibody levels and to determine predictors of antibody levels at 6 months

Results:
- The study included 4868 participants, with 3808 being included in the linear mixed-model analyses.
- The level of IgG antibodies decreased at a consistent rate, whereas the neutralizing antibody level decreased rapidly for the first 3 months with a relatively slow decrease thereafter.
- Although IgG antibody levels were highly correlated with neutralizing antibody titers (Spearman's rank correlation between 0.68 and 0.75), the regression relationship between the IgG and neutralizing antibody levels depended on the time since receipt of the second vaccine dose.
- Six months after receipt of the second dose, neutralizing antibody titers were substantially lower among men than among women (ratio of means, 0.64; 95% CI, 0.55 to 0.75), lower among persons 65 years of age or older than among those 18 to less than 45 years of age (ratio of means, 0.58; 95% CI, 0.48 to 0.70), and lower among participants with immunosuppression than among those without immunosuppression (ratio of means, 0.30; 95% CI, 0.20 to 0.46).

Six months after receipt of the second dose of the BNT162b2 vaccine, humoral response was substantially decreased, especially among men, among persons 65 years of age or older, and among persons with immunosuppression.

Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar

Chemaitelly H., et al.

Qatar [gotopaper](https://www.nejm.org/doi/10.1056/NEJMoa2113328)

Vaccines - Immunisation

Aim: To study the persistence of BNT162b2 (Pfizer–BioNTech) vaccine effectiveness against infection and disease in Qatar, where beta and delta variants have dominated incidence.

- Matched test-negative, case–control study design to estimate vaccine effectiveness against any SARS-CoV-2 infection and against any severe, critical, or fatal case of Covid-19, from January 1 to September 5, 2021.

Results:
- Estimated BNT162b2 effectiveness against any SARS-CoV-2 infection was negligible in the first 2 weeks after the first dose. It increased to 36.8% (95% CI, 33.2 to 40.2) in the third week after the first dose and reached its peak at 77.5% (95% CI, 76.4 to 78.6) in the first month after the second dose.
- Effectiveness declined gradually thereafter, with the decline accelerating after the fourth month to reach approximately 20% in months 5 through 7 after the second dose.
- Effectiveness against symptomatic infection was higher than effectiveness against asymptomatic infection but waned similarly.
- Variant-specific effectiveness waned in the same pattern.
- Effectiveness against any severe, critical, or fatal case of Covid-19 increased rapidly to 66.1% (95% CI, 56.8 to 73.5) by the third week after the first dose and reached 96% or higher in the first 2 months after the second dose; effectiveness persisted at approximately this level for 6 months.

BNT162b2-induced protection against SARS-CoV-2 infection appeared to wane rapidly following its peak after the second dose, but protection against hospitalization and death persisted at a robust level for 6 months after the second dose.
Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel

Aim: to present the clinical and epidemiologic characteristics and follow-up findings of cases of myocarditis that were diagnosed in temporal proximity to vaccination and to examine a possible causal relationship between the vaccine and myocarditis.

Methods: Retrospective analysis from data obtained from December 20, 2020, to May 31, 2021, regarding all cases of myocarditis. The occurrence of myocarditis was analysed by computing the risk difference for the comparison of the incidence after the first and second vaccine doses (21 days apart).

Results:
- Among 304 persons with symptoms of myocarditis, 21 had received an alternative diagnosis. Of the remaining 283 cases, 142 occurred after receipt of the BNT162b2 vaccine; of these cases, 136 diagnoses were definitive or probable.
- The clinical presentation was judged to be mild in 129 recipients (95%); one fulminant case was fatal.
- The overall risk difference between the first and second doses was 1.76 per 100,000 persons, with the largest difference among male recipients between the ages of 16 and 19 years (difference, 13.73 per 100,000 persons).
- As compared with the expected incidence based on historical data, the standardized incidence ratio was 5.34 and was highest after the second dose in male recipients between the ages of 16 and 19 years.
- The rate ratio 30 days after the second vaccine dose in fully vaccinated recipients, as compared with unvaccinated persons, was 2.35; the rate ratio was again highest in male recipients between the ages of 16 and 19 years.

Myocarditis after Covid-19 Vaccination in a Large Health Care Organization

Aim: to evaluate the incidence of myocarditis after the receipt of the BNT162b2 mRNA vaccine in a single health care organization (HCO) in Israel and described the clinical course and disease severity from a review of patients’ charts.

Methods: Analysis from the database of Clalit Health Services, the largest HCO in Israel, for diagnoses of myocarditis in patients who had received at least one dose of the BNT162b2 mRNA vaccine (Pfizer–BioNTech). A Kaplan–Meier analysis of the incidence of myocarditis was performed up to 42 days after the first vaccine dose.

Results:
- Among more than 2.5 million vaccinated HCO members who were 16 years of age or older, 54 cases met the criteria for myocarditis. The estimated incidence per 100,000 persons who had received at least one dose of vaccine was 2.13 cases (CI, 1.56 to 2.70).
- The highest incidence of myocarditis (10.69 cases per 100,000 persons) was reported in male patients between the ages of 16 and 29 years.
- A total of 76% of cases of myocarditis were described as mild and 22% as intermediate; 1 case was associated with cardiogenic shock.
- After a median follow-up of 83 days after the onset of myocarditis, 1 patient had been readmitted to the hospital, and 1 had died of an unknown cause after discharge.
- Of 14 patients who had left ventricular dysfunction on echocardiography during admission, 10 still had such dysfunction at the time of hospital discharge. Of these patients, 5 underwent subsequent testing that revealed normal heart function.

Among patients in a large Israeli health care system who had received at least one dose of the BNT162b2 mRNA vaccine, the estimated incidence of myocarditis was 2.13 cases per 100,000 persons.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Immunol. 05OCT2021 | SARS-CoV-2 immune repertoire in MIS-C and pediatric COVID-19 | Ravichandran S., et al. USA | Immunology | **Aim:** to understand the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children.
Methods: SARS-CoV-2 proteome-wide in-depth antibody profiling in children with mild COVID-19 versus severe COVID-19 versus mild MIS-C versus severe MIS-C that revealed antibody markers associated with clinical disease severity.
Results: >Children with mild COVID-19 and mild MIS-C showed higher antibody binding and antibody avidity to NSP2 and NSP13, compared to children with severe COVID-19 or severe MIS-C.
> A differentially evolving diverse antibody epitope repertoire and avidity maturation to various SARS-CoV-2 proteins in children with mild/moderate versus severe COVID-19 or MIS-C was observed.
> ORF8 and ORF3a peptides for differential serodiagnosis of SARS-CoV-2 infection, as well as the spike fusion peptide and HR2 in the S2 domain were identified as potential candidates for development of better therapeutics and vaccines against SARS-CoV-2.
> These observations provide a more in-depth understanding of quantitative and qualitative aspects of immune responses that could aid in the development and evaluation of targeted, more effective SARS-CoV-2 serodiagnostics, therapeutics and next-generation vaccines for these understudied pediatric populations. |
| Clin Microbiol Infect. 04OCT2021 | Chilblains during lockdown are associated with household exposure to SARS-CoV-2. A multicentre case-control study | Poizeau F., et al. France | Public Health / Epidemiology | Hypotheses have been raised about an interferon-mediated immunological response to SARS-CoV-2, leading to effective clearance of the SARS-CoV-2 without the involvement of humoral immunity. Our objective was to explore the association between chilblains and exposure to SARS-CoV-2.
Method > In this multicentre case-control study, cases were the 102 individuals referred to 5 referral hospitals for chilblains occurring during the first lockdown (March to May 2020)
Findings > All members of their households were included, resulting in 77 case households (262 individuals) and 74 control households (230 individuals).
> After adjustment for age, the association between chilblains and viral exposure was estimated at OR=3.3, 95%CI (1.4-7.3) for an intermediate household exposure, and 6.9 (2.5-19.5) for a high household exposure to SARS-CoV-2
> Out of 57 case households tested, 6 (11%) had positive serology for SARS-CoV-2, whereas all control households tested (n=50) were seronegative (p=0.03). The effect of potential misclassification on exposure has been assessed in a bias analysis.
> This case-control study demonstrates the association between chilblains occurring during the lockdown and household exposure to SARS-CoV-2. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet 04OCT2021 | Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study | Tartof S.Y., et al. USA [gotopaper](#) | Vaccines - Immunisation | **Background**
Vaccine effectiveness studies have not differentiated the effect of the delta (B.1.617.2) variant and potential waning immunity in observed reductions in effectiveness against SARS-CoV-2 infections. This work evaluates overall and variant-specific effectiveness of BNT162b2 against SARS-CoV-2 infections and COVID-19-related hospital admissions by time since vaccination among members of a large US health-care system.

Methods
> Retrospective cohort study to assess BNT162b2 vaccine effectiveness against SARS-CoV-2 infections and COVID-19-related hospital admissions for up to 6 months.

Findings
> 4,920,549 individuals assessed for eligibility, 3,436,957 included (median age 45 years, 52.4% female)
> Effectiveness against SARS-CoV-2 infections was 73% (95% CI 72–74) and against COVID-19-related hospital admissions was 90% (89–92).
> Effectiveness against infections declined from 88% (95% CI 86–89) during the first month after full vaccination to 47% (43–51) after 5 months.
> Among sequenced infections, vaccine effectiveness against infections of the delta variant was high during the first month after full vaccination (93% [95% CI 85–97]) but declined to 53% [39–65] after 4 months.
> Effectiveness against other (non-delta) variants the first month after full vaccination was also high at 97% (95% CI 95–99), but waned to 67% (45–80) at 4–5 months.
> Vaccine effectiveness against hospital admissions for infections with the delta variant for all ages was high overall (93% [95% CI 84–96]) up to 6 months.

Conclusions
> High effectiveness of BNT162b2 against hospital admissions up until around 6 months even in the face of widespread dissemination of the delta variant.
> Reduction in vaccine effectiveness against SARS-CoV-2 infections over time probably due to waning immunity rather than the delta variant escaping vaccine protection.

Method
> We examined survival outcomes for US patients hospitalized with COVID-19 between Aug-Nov 2020 and treated with RDV within two days of hospitalization vs. those not receiving RDV during their hospitalization using the Premier Healthcare Database.

Findings
> 28,855 RDV patients were matched to 16,687 unique non-RDV patients. Overall, 10.6% and 15.4% RDV patients died within 14 and 28 days, respectively compared with 15.4% and 19.1% non-RDV patients.
> Overall, RDV was associated with a reduction in mortality at 14-days (HR [95% CI]: 0.76 [0.70–0.83]) and 28-days (0.89 [0.82–0.96]). This mortality benefit was also seen for NSO, LFO and IMV/ECMO at 14-days (NSO: 0.69 [0.57–0.83], LFO: 0.68 [0.80–0.83]), IMV/ECMO: 0.70 [0.58–0.84]) and 28-days (NSO: 0.80 [0.68–0.94], LFO: 0.77 [0.68–0.86], IMV/ECMO: 0.81 [0.69–0.94]). Additionally, HFO/NIV+RDV group had a lower risk of mortality at 14-days (0.81 [0.70–0.93]) but no statistical significance at 28-days.
> RDV initiated upon hospital admission was associated with improved survival among COVID-19 patients. Our findings complement ACTT-1 and support RDV as a foundational treatment for hospitalized COVID-19 patients.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Commun. 01OCT2021</td>
<td>Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions</td>
<td>Dudas G., et al. International gotopaper</td>
<td>Variants</td>
<td>We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ.</td>
</tr>
<tr>
<td>Science Immunol. 30SEP2021</td>
<td>Immune signatures underlying post-acute COVID-19 lung sequelae</td>
<td>Cheon I.S., et al. USA gotopaper</td>
<td>Clinics</td>
<td>Aim: to understand the underlying mechanisms or associated local and systemic immune correlate of long-term pulmonary sequelae in severe COVID-19 pneumonia survivors Results: > Chronic lung impairment was accompanied by persistent respiratory immune alterations. > Functional SARS-CoV-2-specific memory T and B cells were enriched at the site of infection compared to those of blood. > Dysregulated respiratory CD8+ T cell responses were associated with the impaired lung function following acute COVID-19. > Single cell transcriptomic analysis identified the potential pathogenic subsets of respiratory CD8+ T cells contributing to persistent tissue conditions following COVID-19. This study reveals pathophysiological and immune traits that may support the development of lung sequelae following SARS-CoV-2 pneumonia in older individuals.</td>
</tr>
<tr>
<td>Science Transl Med. 30SEP2021</td>
<td>Early sample tagging and pooling enables simultaneous SARS-CoV-2 detection and variant sequencing</td>
<td>Chappleboim A., et al. Israel gotopaper</td>
<td>Diagnostics</td>
<td>Establishment of ApherSeq, a detection/sequencing method in which samples are barcoded in the lysis buffer and pooled prior to reverse transcription. > Assay by applying ApherSeq to more than 500 clinical in a robotic workflow. The assay was linear across five orders of magnitude, and the limit of detection was Ct 33 (~1000 copies/ml, 95% sensitivity) with >99.5% specificity. > ApherSeq provided targeted high-confidence genotype information due to unique molecular identifiers incorporated into this method. > Due to early pooling, it was possible to estimate a 10-fold to a 100-fold reduction in labor, automated liquid handling, and reagent requirements in high throughput settings compared to current testing methods. > The protocol can be tailored to assay other host or pathogen RNA targets simultaneously. These results suggest that ApherSeq can be a promising tool for current and future mass diagnostic challenges.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Nature Med. 30SEP2021 | Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors | Shroff R.T., et al. USA gotopaper | Vaccines - Immunisation | Comparision of immune responses to the BNT162b2 vaccine in patients with solid tumors (n = 53) on active cytotoxic anti-cancer therapy to a control cohort of participants without cancer (n = 50).
Findings
> Neutralizing antibodies detected in 67% of patients with cancer after the first immunization. 3-fold increase in median titers after the second dose.
> Similar patterns observed for spike protein-specific serum antibodies and T cells, but the magnitude of each of these responses was diminished relative to the control cohort.
> Spike receptor-binding domain and other S1-specific memory B cell subsets detected in cancer patients --> potential predictors of anamnestic responses to additional immunizations.
> 20 cancer participants received a third vaccine dose of BNT162b2 - At 1 week after a third immunization, 16 participants had a median threefold increase in neutralizing antibody responses, but no improvement in T cell responses. - Mild adverse events.
Conclusion
These results suggest that a third dose of BNT162b2 is safe, improves humoral immunity against SARS-CoV-2 and could be immunologically beneficial for patients with cancer on active chemotherapy. |
| Science Transl Med. 30SEP2021 | AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein-specific Th1 response with a diverse TCR repertoire | Swanson P.A., et al. USA gotopaper | Vaccines | Aim: to characterize CD4+ and CD8+ T cell responses induced by AZD1222 (ChAdOx1 nCoV-19) vaccination in peripheral blood mononuclear cells (PBMCs) from 296 unique vaccine recipients aged 18 to 85 years who enrolled in the phase 2/3 COV002 trial.
Methods:
Functional analysis of CD4+ and CD8+ T cell responses following the 1st and 2nd doses of AZD1222 in healthy adults aged 18 to 85 years enrolled in phase 1-3 trials conducted in the UK.
Results:
> Total spike protein-specific CD4+ T cell helper type 1 (Th1) and CD8+ T cell responses were increased in AZD1222-vaccinated adults of all ages following two doses of AZD1222.
> CD4+ Th2 responses following AZD1222 vaccination were not detected.
> AZD1222-specific Th1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups.
> T cell receptor (TCR) β sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for both AZD1222-induced CD4+ and CD8+ T cell responses.
AZD1222 vaccination induced a polyfunctional Th1-dominated T cell response, with broad CD4+ and CD8+ T cell coverage across the SARS-CoV-2 spike protein. |
| Nature Med. 29SEP2021 | Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection | Feng S., et al. UK gotopaper | Clinics | Aim: to determine the antibody levels associated with protection against SARS-CoV-2.
Methods: Analysis of data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the UK concerning binding and neutralizing antibodies at 28 days after the second dose in infected and noninfected vaccine recipients.
Results
> Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection.
> A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF50) for pseudovirus and live-virus neutralization, respectively.
> Immune markers were not correlated with asymptomatic infections at the 5% significance level.
These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA Netw Open 29SEP2021</td>
<td>Symptoms and Health Outcomes Among Survivors of COVID-19 Infection 1 Year After Discharge From Hospitals in Wuhan, China</td>
<td>Zhang X., et al. China gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>To evaluate health outcomes of COVID-19 survivors 1 year after hospital discharge and to identify associated risk factors. Method > This retrospective, multicenter cohort study was conducted at 2 designated hospitals in China > All adult patients with COVID-19 discharged between February 12 and April 10, 2020, were screened for eligibility > All patients participated in telephone interviews using a series of questionnaires for evaluation of symptoms, along with a chronic obstructive pulmonary disease (COPD) assessment test (CAT) Findings > In this cohort study of 2433 patients who had been hospitalized with COVID-19, the most common symptoms at 1 year after discharge were fatigue, sweating, chest tightness, anxiety, and myalgia. Patients with severe disease had more postinfection symptoms and higher chronic obstructive pulmonary disease assessment test scores. > Older age (odds ratio [OR], 1.02; 95% CI, 1.01-1.02; P < .001), female sex (OR, 1.27; 95% CI, 1.06-1.52; P = .008), and severe disease during hospital stay (OR, 1.43; 95% CI, 1.18-1.74; P < .001) were associated with higher risks of fatigue. > Older age (OR, 1.02; 95% CI, 1.01-1.03; P < .001) and severe disease (OR, 1.51; 95% CI, 1.14-1.99; P = .004) were associated with higher risks of having at least 3 symptoms This study found that patients with COVID-19 with severe disease during hospitalization had more postinfection symptoms and higher CAT scores.</td>
</tr>
<tr>
<td>Lancet 29SEP2021</td>
<td>Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international Extracorporeal Life Support Organization Registry</td>
<td>Barbaro R.P., et al. International</td>
<td>Clinics</td>
<td>Aim: to examine patient selection, treatments, outcomes, and ECMO centre characteristics over the course of the pandemic to date. Methods: Retrospective analysis the Extracorporeal Life Support Organization Registry and COVID-19 Addendum to compare three groups of ECMO-supported patients with COVID-19 (aged ≥16 years). Results: > In 2020, 4812 patients with COVID-19 received ECMO across 349 centers within 41 countries. > For early-adopting centres, the cumulative incidence of in-hospital mortality 90 days after ECMO initiation was 36.9% (95% CI 34.1–39.7) in patients who started ECMO on or before May 1 (group A1) versus 51.9% (50.0–53.8) after May 1 (group A2); at late-adopting centres (group B), it was 58.9% (55.4–62.3). > Relative to patients in group A2, group A1 patients had a lower adjusted relative risk of in-hospital mortality 90 days after ECMO (hazard ratio 0.82 [0.70–0.96]), whereas group B patients had a higher adjusted relative risk (1.42 [1.17–1.73]). Mortality after ECMO for patients with COVID-19 worsened during 2020.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NEJM 29SEP2021</td>
<td>REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19</td>
<td>Weinreich D.M., et al. USA gtopaper</td>
<td>Therapeutics</td>
<td>Phase 3 of an adaptive trial testing REGEN-COV (casirivimab/imdevimab), at 2400-mg or 1200-mg doses, on outpatients with Covid-19 and risk factors for severe disease. End points: hospitalization or death and the time to resolution of symptoms at day 29. Results > Covid-19–related hospitalization or death from any cause occurred in 18 of 1355 patients in the REGEN-COV 2400-mg group (1.3%) and in 62 of 1341 patients in the placebo group who underwent randomization concurrently (4.6%) (relative risk reduction [1 minus the relative risk], 71.3%; P<0.001) > These outcomes occurred in 7 of 736 patients in the REGEN-COV 1200-mg group (1.0%) and in 24 of 748 patients in the placebo group who underwent randomization concurrently (3.2%) (relative risk reduction, 70.4%; P=0.002). > The median time to resolution of symptoms was 4 days shorter with each REGEN-COV dose than with placebo (10 days vs. 14 days; P<0.001 for both comparisons). > REGEN-COV was efficacious across various subgroups, including patients who were SARS-CoV-2 serum antibody–positive at baseline. > Both REGEN-COV doses reduced viral load faster than placebo; the least-squares mean difference in viral load from baseline through day 7 was −0.71 log10 copies per milliliter (95% CI, −0.90 to −0.53) in the 1200-mg group and −0.86 log10 copies per milliliter (95% CI, −1.00 to −0.72) in the 2400-mg group. > Serious adverse events occurred more frequently in the placebo group (4.0%) than in the 1200-mg group (1.1%) and the 2400-mg group (1.3%); infusion-related reactions of grade 2 or higher occurred in less than 0.3% of the patients in all groups. REGEN-COV reduced the risk of Covid-19–related hospitalization or death from any cause, and it resolved symptoms and reduced the SARS-CoV-2 viral load more rapidly than placebo.</td>
</tr>
<tr>
<td>NEJM 29SEP2021</td>
<td>Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine</td>
<td>Falsey A.R., et al. International gtopaper</td>
<td>Vaccines</td>
<td>Phase 3 trial of the AZD1222 (ChAdOx1 nCoV-19) vaccine. - Evaluation of safety, efficacy and immunogenicity of two doses of AZD1222 as compared with placebo in preventing the onset of symptomatic and severe Covid-19 ≥15 days after the second dose in adults, including older adults, in the USA, Chile, and Peru. - A total of 32,451 participants underwent randomization, in a 2:1 ratio, to receive AZD1222 (21,635 participants) or placebo (10,816 participants). Results > AZD1222 was safe, with low incidences of serious and medically attended adverse events and adverse events of special interest; the incidences were similar to those observed in the placebo group. Solicited local and systemic reactions were generally mild or moderate in both groups. > Overall estimated vaccine efficacy was 74.0% (95% CI, 65.3 to 80.5; P<0.001) and estimated vaccine efficacy was 83.5% (95% CI, 54.2 to 94.1) in participants ≥65 years of age. > High vaccine efficacy was consistent across a range of demographic subgroups. In the fully vaccinated analysis subgroup, no severe or critical symptomatic Covid-19 cases were observed among the 17,662 participants in the AZD1222 group; 8 cases were noted among the 8550 participants in the placebo group (<0.1%). > The estimated vaccine efficacy for preventing SARS-CoV-2 infection (nucleocapsid antibody seroconversion) was 64.3% (95% CI, 56.1 to 71.0; P<0.001). > SARS-CoV-2 spike protein binding and neutralizing antibodies increased after the first dose and increased further when measured 28 days after the second dose. AZD1222 was safe and efficacious in preventing symptomatic and severe Covid-19 across diverse populations that included older adults.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Science 28SEP2021 | A prenylated dsRNA sensor protects against severe COVID-19 | Wickenhagen A., et al. Brazil/UK [gotopaper](#) | Immunology | Background: Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity.
Aim: to better understand the antiviral defenses, notably type I IFNs, relevant to COVID-19, by using interferon-stimulated gene (ISG) expression screening.
> OAS1, through RNase L, potently and highly specifically inhibits SARS-CoV-2
> OAS1 has a robust antiviral activity, its low basal transcription was highly IFN inducible, its mRNA was readily detectable in infected patients, and common allelic variants were associated with altered susceptibility to infection and severe disease
> A common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2
> In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19. These results suggest that this antiviral defense is a major component of a protective antiviral response. |
| Clin Microbiol Infect 27SEP2021 | Real-world safety data for the Pfizer BNT162b2 SARS-CoV-2 vaccine, historical cohort study | Shasha D., et al. Israel [gotopaper](#) | Vaccines | The Pfizer BNT162b2 vaccine showed a reassuring safety profile in clinical trials, but real-world data are scarce. Bell’s palsy, herpes-zoster, Guillain-Barré syndrome (GBS) and other neurological complaints in proximity to vaccination have received special public attention.
Methods
> Individuals ≥16 years vaccinated with at least one dose of BNT162b2 were eligible for this historical-cohort study in a health maintenance organization insuring 1.2 million citizens.
> Each vaccinee was matched to a non-vaccinated control by sex, age, population sector (general Jewish, Arab, ultra-orthodox Jewish) and comorbidities
> The outcome was a diagnosis of: Bell’s palsy, GBS, herpes-zoster, or symptoms of numbness or tingling, coded in the visit diagnosis field using ICD-9 codes
findings
> Of 406,148 individuals vaccinated during the study period, 394,609 (97.2%) were eligible (11,539 excluded). 233,159 (59.1%) were matched with unvaccinated controls. Mean follow was 43±15.14 days.
> In vaccinated and unvaccinated individuals there were 23 versus 24 cases of Bell’s palsy (RR 0.96, CI 0.54-1.70), 1 versus 0 cases of GBS, 151 versus 141 cases of herpes-zoster (RR 1.07, CI 0.85-1.35), and 605 versus 497 cases of numbness or tingling (RR 1.22, CI 1.08-1.37), respectively.
No association was found between vaccination, Bell’s palsy, herpes-zoster or GBS. Symptoms of numbness or tingling were more common among vaccinees. This study adds reassuring data regarding the safety of the BNT162b2 vaccine. |
| Science 23SEP2021 | Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study | Hastie K.M., et al. USA [gotopaper](#) | Immunology - Variants | > To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 Spike, defining and structurally illustrating seven receptor-binding domain (RBD)-directed antibody communities with distinct footprints and competition profiles
Results
> Pseudovirion-based neutralization assays reveal Spike mutations, individually and clustered together in variants, that impact antibody function among the communities
> Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants.
> These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Infect Dis. 23SEP2021 | Congenital infection of SARS-CoV-2 with intrauterine foetal death: a clinicopathological study with molecular analysis | Lesieur E., et al. France gotopaper | Clinics | **Aim:** to present the adverse outcome of an intrauterine infection of SARS-CoV-2 causing foetal demise and placentaland foetal injuries, with the identification of viral RNA and proteins in both specimens in addition to detection of the incriminating variant.
Methods: Case of in utero foetal death at 24 +2 weeks of gestation that occurred seven days after the diagnosis of symptomatic SARS-CoV-2 infection in the mother, the incriminating virus was isolated by immunochemistry and molecular techniques in several foetal tissues, with a variant analysis of the SARS-CoV-2 genome.
Findings:
- The foetal demise could be explained by the presence of placental histological lesions, such as histiocytic intervillitis and trophoblastic necrosis, in addition to foetal tissue damage.
- Mild foetal growth retardation and visceral damage to the liver, causing hepatocellular damage and haemosiderosis were observed.
- SARS-CoV-2 was identified in both specimens by three independent techniques (immunochemistry, RT-qPCR and RT-dPCR).
- The V2 (B1.351, Beta, South African) variant was identified in this case.
This is the first report in the literature of foetal demise secondary to maternal-foetal transmission of SARS-CoV-2 with a congenital infection and a pathological description of placental and foetal tissue damage

Methods
- Assessment the longitudinal nasal antibody response in index cases with mild COVID-19 and their household contacts during the first pandemic wave: prospective, observational household-contact study in 50 households with at least one PCR-confirmed case (index case) and two household members (contacts)
- Timing, magnitude and persistence of mucosal antibodies and their associations with viral load and COVID-19 related symptom development.
- 9 months follow up
Findings
- 50 index cases and 80 contact cases among 137 household contacts
- No age-related differences with regards to the frequency of cases amongst household contacts
- Primary infection with SARS-CoV-2 induces a broad and persistent mucosal antibody response against Spike and RBD, whereas for nucleocapsid protein the response was restricted to IgG.
- Higher nasal receptor binding domain and spike protein-specific antibody levels at inclusion were associated with lower viral load.
- Older age correlates with more frequent COVID-19 related symptoms.
- Receptor binding domain and spike protein-specific mucosal antibodies were associated with the resolution of systemic, but not respiratory symptoms.
- RBD and spike protein-specific mucosal antibodies remained elevated up to nine months after symptom onset.
Conclusion Higher nasal antibody response may play a key role in limiting disease by initiating early viral clearance and facilitating the resolution of systemic symptoms |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| JAMA Netw Open | Assessment of a Program for SARS-CoV-2 Screening and Environmental | Crowe J., et al. USA gotopaper | Public Health / Epidemiology | **Aim:** to characterize SARS-CoV-2 infections in staff and students in an urban public school setting and evaluate test-based strategies to support ongoing risk assessment and mitigation for kindergarten through 12th grade in-person learning.
Methods: Pilot quality improvement program engaged 3 schools in Omaha, Nebraska, for weekly saliva PCR testing of staff and students participating in in-person learning over a 5-week period. Wastewater, air, and surface samples were collected weekly and tested for SARS-CoV-2 RNA to evaluate surrogacy for case detection and interrogate transmission risk of in-building activities.
Findings:
> A total of 2885 supervised, self-collected saliva samples were tested from 458 asymptomatic staff members (mean [SD] age, 42.9 [12.4] years) and 315 students (mean age, 14.2 [0.7] years)
> A total of 46 cases of SARS-CoV-2 (22 students and 24 staff members) were detected, representing an increase in cumulative case detection rates from 1.2% to 7.0% among students and from 2.1% to 5.3% among staff compared with conventional reporting mechanisms during the pilot period.
> SARS-CoV-2 RNA was detected in wastewater samples from all pilot schools as well as in air samples collected from 2 choir rooms.
> Sequencing of 21 viral genomes in saliva specimens demonstrated minimal clustering associated with 1 school.
> Geographical analysis of SARS-CoV-2 cases reported district-wide demonstrated higher community risk in zip codes proximal to the pilot schools.
Weekly screening of asymptomatic staff and students by saliva PCR testing was associated with increased SARS-CoV-2 case detection, exceeding infection rates reported at the county level. Experiences differed among schools, and virus sequencing and geographical analyses suggested a dynamic interplay of school-based and community-derived transmission risk. |
- 3 doses (low-dose vaccine, middle-dose vaccine or placebo) given intramuscularly 56 days apart.
Results:
> 430 participants enrolled, with 30 participants aged 18-55 years (MID cohort), 250 participants aged 56 years and older (OLD cohort), and 150 participants aged 6-17 years (MIN cohort).
> Ad5-vectored COVID-19 vaccine induced significant RBD-specific ELISA antibodies which decreased with increasing age, with geometric mean titres (GMTs) of 1037.5 in MIN cohort, 647.2 in MID cohort, and 338.0 in OLD cohort receiving 5×10^10 viral particles on day 28 following boost vaccination.
> Pseudovirus neutralising antibodies showed a similar pattern, with GMTs of 168.0 in MIN cohort, 76.8 in MID cohort, and 79.7 in OLD cohort.
> A single dose in children and adolescents induced higher antibody responses than that elicited by two doses in adults, with GMTs of 1091.6 and 96.6 in ELISA antibody and neutralising antibody, respectively.
> Homologous prime-boost vaccination was safe and tolerable.
Ad5-vectored COVID-19 vaccine with a single dose was safe and induced robust immune responses in children and adolescents aged 6-17 years. A prime-boost regimen needs further exploration for Ad5-vectored COVID-19 vaccine. |
Infections, hospitalisations, and deaths averted via a nationwide vaccination campaign using the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine in Israel: a retrospective surveillance study

Haas E.J., et al. Israel
gotopaper

Vaccines - Immunisation

Key facts

Estimation of the number of SARS-CoV-2 infections and COVID-19-related admissions to hospital (ie, hospitalisations) and deaths averted by the nationwide vaccination campaign.

Methods

> Retrospective surveillance study using national surveillance data from the Israeli Ministry of Health (Dec 20, 2020, up to our data cutoff of April 10, 2021)
> Estimation of the averted burden of four outcomes: SARS-CoV-2 infections and COVID-19-related hospitalisations, severe or critical hospitalisations, and deaths

Findings

> Israel's vaccination campaign averted:
 - 158,665 (95% CI 144,640–172,690) SARS-CoV-2 infections,
 - 24,597 (18,942–30,252) hospitalisations,
 - 17,432 (12,770–22,094) severe or critical hospitalisations,
 - 5532 (3085–7982) deaths.

> 16,213 (65·9%) of 24,597 hospitalisations and 5035 (91·0%) of 5532 deaths averted were estimated to be among those aged 65 years and older.

> 116,000 (73·1%) SARS-CoV-2 infections, 19,467 (79·1%) COVID-19-related hospitalisations, and 4351 (79%) deaths averted were accounted for by the fully vaccinated population.

Conclusions

Without the national vaccination campaign, Israel probably would have had triple the number of hospitalisations and deaths compared with what actually occurred during its largest wave of the pandemic to date, and the health-care system might have become overwhelmed.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 22SEP2021 | Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase | Sahly H.M., et al. USA [g]otopaper | Vaccines - Immunisation | Final analyses of efficacy and safety data from the blinded phase of the phase 3 trial of mRNA-1273 Moderna vaccine are reported.
- Volunteers at high risk for Covid-19 or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 µg) or placebo, 28 days apart.
Primary end point: prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2.
Data cutoff date was March 26, 2021.
Results
> The trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase.
> Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% CI, 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8).
> The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group.
> Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified.
The mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed. |
| NEJM 22SEP2021 | Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel | Pilishvili T., et al. USA [g]otopaper | Vaccines - Immunisation | Aim: to estimated vaccine effectiveness for partial vaccination (assessed 14 days after receipt of the first dose through 6 days after receipt of the second dose) and complete vaccination (assessed ≥7 days after receipt of the second dose).
- Test-negative case–control study involving health care personnel across 25 U.S. states.
Results
> The study included 1482 case participants and 3449 control participants.
> Vaccine effectiveness for partial vaccination was 77.6% (95% CI, 70.9 to 82.7) with the BNT162b2 vaccine (Pfizer–BioNTech) and 88.9% (95% CI, 78.7 to 94.2) with the mRNA-1273 vaccine (Moderna); for complete vaccination, vaccine effectiveness was 88.8% (95% CI, 84.6 to 91.8) and 96.3% (95% CI, 91.3 to 98.4), respectively.
> Vaccine effectiveness was similar in subgroups defined according to age (<50 years or ≥50 years), race and ethnic group, presence of underlying conditions, and level of patient contact.
> Estimates of vaccine effectiveness were lower during weeks 9 through 14 than during weeks 3 through 8 after receipt of the second dose, but confidence intervals overlapped widely.
The BNT162b2 and mRNA-1273 vaccines were highly effective under real-world conditions in preventing symptomatic Covid-19 in health care personnel, including those at risk for severe Covid-19 and those in racial and ethnic groups disproportionately affected by pandemic. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Transl Med, 21SEP21 | Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against re-infection with B.1.1.7 and B.1.351 variants | Chandrashekar A., et al. USA [gotopaper](#) | Vaccines | **Aim**: to test if natural immunity induced by original SARS-CoV-2 WA1/2020 strain protects against re-challenge with SARS-CoV-2 variants.
Findings
> Natural immunity induced by the WA1/2020 strain leads to partial but incomplete protection against the SARS-CoV-2 variants B.1.1.7 (alpha) and B.1.351 (beta) in rhesus macaques.
> We challenged rhesus macaques with B.1.1.7 and B.1.351 and showed that infection with these variants resulted in high viral replication in the upper and lower respiratory tract. We then infected rhesus macaques with the WA1/2020 strain and re-challenged them on day 35 with the WA1/2020, B.1.1.7, or B.1.351 variants.
> Natural immunity to WA1/2020 led to robust protection against re-challenge with WA1/2020 but only partial protection against re-challenge with B.1.351
> An intermediate degree of protection was observed in rhesus macaques against re-challenge with B.1.1.7.
These data demonstrate partial but incomplete protective efficacy of natural immunity induced by WA1/2020 against SARS-CoV-2 variants. |
| Nature 21SEP2021 | Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy | Yamin R., et al. USA [gotopaper](#) | Therapeutics | **Aim**: to report the development and evaluation of Fc-optimized anti-SARS-CoV-2 mAbs with superior potency to prevent or treat COVID-19 disease.
Methods: The study focused on neutralizing anti-SARS-CoV-2 mAbs that are currently in clinical use or development and assessed their in vivo protective activity in mouse strains that recapitulate the unique complexity of human FcyRs
Findings:
> FcyR, but not complement pathways confer mAb-mediated protection, as mAbs lack protective activity in mice deficient for all classes of FcyRs
> Fc variants like GAALE, which exhibit diminished C1q binding activity, demonstrate improved therapeutic efficacy compared to wild-type IgG1
> The study failed to observe any pathogenic or disease-enhancing effects for anti-SARS-CoV-2 mAbs engineered for enhanced binding to activating FcyRs, irrespective of their neutralizing potency.
The results highlight the importance of FcyR pathways in driving antibody-mediated antiviral immunity, while excluding any pathogenic or disease-enhancing effects of FcyR engagement of anti-SARS-CoV-2 antibodies upon infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Infect Dis. 19SEP21 | Safety and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in a Subgroup of Healthy Adults in Chile | Bueno S.M., et al. Chile gotopaper | Vaccines - Immunisation | Background
Inactivated SARS-CoV-2 vaccine CoronaVac safety and immunogenicity results obtained for healthy Chilean adults aged ≥18 (ph.3 clinical trial)

Methods
> 434 volunteers were enrolled, 397 aged 18-59 years, and 37 aged ≥60 years.
> Two doses of CoronaVac or placebo, separated by two weeks.
> Solicited and unsolicited adverse reactions were registered from all volunteers. Blood samples were obtained from a subset of volunteers and analyzed for humoral and cellular measures of immunogenicity.

Results
> The primary adverse reactions: pain at the injection site, with a higher incidence in the vaccine than in the placebo arm.
> Adverse reactions mostly mild and local.
> No severe adverse events reported.
> Humoral evaluation on 81 volunteers:
 - Seroconversion rates for specific anti-S1-RBD IgG: 86.67% in the 18-59 age group and 70.37% in the ≥60 age group, two and four weeks after the second dose.
 - Significant increase in circulating neutralizing antibodies detected two and four weeks after the second dose.
> Cellular evaluation on 47 volunteers:
 - significant induction of T cell responses characterized by the secretion of IFN-γ upon stimulation with Mega Pools of peptides from SARS-CoV-2.

Conclusions
Immunization with CoronaVac in a 0-14 schedule in adults aged ≥18 is safe, induces anti-S1-RBD IgG with neutralizing capacity, activates T cells, and promotes the secretion of IFN-γ upon stimulation with SARS-CoV-2 antigens.

| Clin Microbiol Infect. 18SEP21 | The temporal course of T- and B-cell responses to vaccination with BNT162b2 and mRNA-1273 | Merkewitz R., et al. Germany gotopaper | Vaccines - Immunisation | Immune response to vaccination with BNT162b2 or mRNA-1273.

Methods
> 531 vaccinees (HCW). Biological sampling before, in between, and after the administration of the two doses of the vaccine.
> T- and B-cell responses examined via IFN-γ release, detection of antibodies against different epitopes of SARS-CoV-2 (S1 and NCP and binding surrogate neutralization assay.
> Results were correlated with influence factors such as age, sex, prior infection, vaccine received (BNT162b2 or mRNA-1273), and immunosuppression.
> Antinuclear antibodies (ANA) were measured to screen for autoimmune responses following vaccination with an mRNA vaccine.

Findings
> No markers of immunity against SARS-CoV-2 were found before the first vaccination.
> Specific responses against SARS-CoV-2 measurable from two weeks after 1st dose (IMAD: anti-S1 IgG: 195.5±172.7 BAU/ml; IgA: 6.7±4.9 OD; surrogate neutralization: 39±23.7 %), significantly increased two weeks after the second dose (anti-S1 IgG: 3744±2571.4 BAU/ml; IgA: 12±0 OD; surrogate neutralization: 100±0 %, IFN-γ: 1897.2±886.7 mIU/ml).
> Stronger responses in younger participants, but difference decreasing after the second dose.
> Previous infection with SARS-CoV-2 caused significantly stronger responses after the first dose compared to unexposed individuals (p ≤ 0.0001))
> Significantly stronger reactions for recipients of mRNA-1273 after both doses (p < 0.05 – 0.0001)).
> Some forms of immunosuppression significantly impeded the immune response to the vaccination (with no observable immune response in three immunosuppressed participants).
> No significant induction of ANA by the vaccination

Conclusions
Both vaccines elicit strong and specific immune responses against SARS-CoV-2, which become detectable one week (T-cell-response) or two weeks (B-cell-response) after the first dose.
Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates

Background: An immune correlate of protection are clinical end points used to gauge vaccine-induced immunogenicity and protection.

Aim: To evaluate how multiple measurements of humoral and cellular immunity correlate with the reduction of viral replication in the upper and lower airway after challenge.

- Antibodies in bronchoalveolar lavage (BAL) and nasal swabs (NS) after vaccination were analyzed to assess site-specific immune correlates.
- IgG from mRNA-immunized non-human primates (NHPs) was passively transferred in a highly pathogenic Syrian hamster SARS-CoV-2 challenge model to determine protection.

Results

- NHPs received either no vaccine or doses ranging from 0.3 to 100 μg of mRNA-1273 at weeks 0 and 4. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner.
- Using the WHO standard for measuring S-specific IgG, a 10-fold increase in S-binding titers was associated with ~10-fold reductions in viral replication in BAL and NS after challenge.
- No animal with S-specific IgG >336 IU/ml had BAL subgenomic RNA (sgRNA) >10,000 copies/ml, and no animal with S-specific IgG >645 IU/ml had NS sgRNA >100,000 copies/swab, so these were chosen as the thresholds for protection.
- These reductions in viral replication in BAL were associated with limited inflammation and viral antigen detection in lung tissue.
- Passive transfer of vaccine-induced IgG from NHPs to naive hamsters was sufficient to mediate protection.

mRNA-1273 vaccine–induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHPs.

Protection in the lower respiratory tract was achieved at lower serum antibody concentrations than in the upper respiratory tract. These data explain in part the consistent finding that vaccine efficacy against severe lower tract disease is greater than that against mild upper tract disease.

Risk prediction of covid-19 related death and hospital admission in adults after covid-19 vaccination: national prospective cohort study

Aim: To derive and validate risk prediction algorithms to estimate the risk of covid-19 related mortality and hospital admission in UK adults after one or two doses of covid-19 vaccination.

Methods:

Prospective, population based cohort study using the QResearch database linked to data on covid-19 vaccination, SARS-CoV-2 results, hospital admissions, systemic anticancer treatment, radiotherapy, and the national death and cancer registries. Adults aged 19-100 years with one or two doses of covid-19 vaccination.

Findings:

- Of 6,952,440 vaccinated patients in the derivation cohort, 5,150,310 (74.1%) had two vaccine doses.
- Of 2,031 covid-19 deaths and 1,929 covid-19 hospital admissions, 81 deaths (4.0%) and 71 admissions (3.7%) occurred 14 days or more after the second vaccine dose.
- Incidence of covid-19 mortality increased with age and deprivation, male sex, and Indian and Pakistani ethnic origin.
- Cause specific hazard ratios were highest for patients with Down’s syndrome (12.7-fold increase), kidney transplantation (8.1-fold), sickle cell disease (7.7-fold), care home residency (4.1-fold), chemotherapy (4.3-fold), HIV/AIDS (3.3-fold), liver cirrhosis (3.0-fold), neurological conditions (2.6-fold), recent bone marrow transplantation or a solid organ transplantation ever (2.5-fold), dementia (2.2-fold), and Parkinson’s disease (2.2-fold).
- No evidence indicated that associations differed after the second dose, although absolute risks were reduced. The risk algorithm explained 74.1% (95% confidence interval 71.1% to 77.0%) of the variation in time to covid-19 death in the validation cohort.

This population based risk algorithm performed well showing high levels of discrimination for identifying those patients at highest risk of covid-19 related death and hospital admission after vaccination.
Influence of treatment with neutralizing monoclonal antibodies on the SARS-CoV-2 nasopharyngeal load and quasispecies

Vella C., et al. France
gotopaper

Therapeutics

Evaluation of the impact of (mAbs) treatment and to determine whether the mAbs selective pressure could facilitate the proliferation of virus variants with spike protein mutations that might attenuate mAb effectiveness.

Methods

> Impact of mAbs on the nasopharyngeal (NP) viral load and virus quasispecies of mAb-treated patients using single molecule real time sequencing (Bamlanivimab alone (4 patients), Bamlanivimab/Etesevimab (23 patients), and Casirivimab/Imdevimab (5 patients)).

Findings

> The NP SARS-CoV-2 viral load of mAb-treated patients decreased from 8.2 log10 copies/ml before administration to 4.3 log10 copies/ml 7 days after administration.
> Five immunocompromised patients given Bamlanivimab/Etesevimab were found to have mAbs activity-reducing spike mutations.
> Two patients harbored SARS-CoV-2 variants with a Q493R spike mutation 7 days after administration, and the fifth patient had a variant with a E484K spike mutation on day 21.
> Emergence of the spike mutation was accompanied by stabilization or rebound of the NP viral load in 3/5 patients.

Conclusion

Two-mAb therapy can drive the selection of resistant SARS-CoV-2 variants in immunocompromised patients. Patients given mAbs should be closely monitored and measures to limit virus spread reinforced.

SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3

Falsey A.R., et al. USA
gotopaper

Vaccines - Immunisation

Background: A two 30-μg dose regimen of BNT162b2 provided 95% efficacy against Covid-19 from 7 days to approx. 2 months after dose 2. Efficacy waned to 84% at 4-6 months. Waning immunity and viral diversification create a possible need for a third vaccine dose.

- Administration of a third 30-μg BNT162b2 dose 7.9-8.8 months after dose 2 to 11 participants aged 18-55 and to 12 participants aged 65-85 (phase 1)

Results

> Local reactions and systemic events after dose 3 were predominantly mild to moderate and were similar to those after dose 2. No unsolicited adverse events were reported in the month after dose 3.
> During approx. 8 months from 7 days after dose 2 to before dose 3, SARS-CoV-2 neutralization geometric mean titers (GMTs) declined far more rapidly than vaccine efficacy declined in participants in the phase 2–3 pivotal trial.
> By 1 month after dose 3, neutralization GMTs against wild-type virus increased to more than 5 times as high (in 18-55-year-olds) and to more than 7 times as high (in 65-85-year-olds) as the GMTs 1 month after dose 2.
> Neutralization GMTs against the beta variant increased more after dose 3 than did GMTs against wild-type virus, to more than 15 times as high (in younger adults) and more than 20 times as high (in older adults) as those after dose 2.
> Neutralization GMTs decreased from 7 days to 1 month after dose 2 but increased from 7 days to 1 month after dose 3. A similar pattern of broader neutralization (i.e., against variant strains) and higher GMTs after dose 3 was seen in assays of neutralization GMTs against recombinant virus with delta variant spike protein on a wild-type genetic background (GMTs (delta to WT) 1 month after dose 3 was 0.85 in younger adults and 0.92 in older adults).

The safety and immunogenicity of a booster dose of BNT162b2 administered 7-9 months after the primary two-dose series suggest that a third dose could prolong protection and further increase the breadth of protection.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Infect Dis. 15SEP2021 | Randomized study of rivaroxaban vs. placebo on disease progression and symptoms resolution in high-risk adults with mild COVID-19 | Ananworanich J., et al. (USA) | Therapeutics | **Aim:** to investigate whether rivaroxaban, a direct oral anticoagulant factor Xa inhibitor would reduce COVID-19 progression.
Methods:
Adults (N=497) symptomatic with mild COVID-19 and at high-risk for COVID-19 progression based on age, body mass index, or comorbidity were randomized 1:1 to either daily oral rivaroxaban 10 mg (N=246) or placebo-equivalent (N=251) for 21 days and followed to Day 35. Primary endpoints were safety and progression to moderate or severe disease, per the Gates MRI scale.
Findings: > The study was terminated after 497 of target 600 participants were enrolled due to a pre-specified interim analysis of the first 200 participants which crossed the futility boundary for the primary efficacy endpoint in the Intent to Treat population.
> Enrollees were 85% aged < 65 years old, 60% female, 27% Hispanic, Black or other minorities and 69% with ≥2 comorbidities.
> Rivaroxaban was well-tolerated.
> Disease progression rates were 46/222 (20.7%) in rivaroxaban vs. 44/222 (19.8%) in placebo groups, with a risk difference of -1.0, 95% CI, -6.4 to 8.4; P = 0.78.
The study did not demonstrate an impact of rivaroxaban on disease progression in high-risk adults with mild COVID-19. |
| Lancet Infect Dis. 15SEP21 | Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial | Xia S, et al. (China) | Vaccines | **Aim:** to further evaluate the inactivated COVID-19 vaccine candidate BBIBP-CorV, by assessing its safety and immunogenicity in participants aged 3–17 years.
Methods: > A randomised, double-blind, controlled, phase 1/2 trial was done. In phases 1 and 2, healthy participants were stratified according to age (3–5 years, 6–12 years, or 13–17 years) and dose group.
> The primary outcome, safety, analysed in the safety set, consisting of participants who had received at least one vaccination after being randomly assigned, and had any safety evaluation information.
Findings: > Between Aug 14, 2020, and Sept 24, 2020, 445 participants were screened, and 288 eligible participants were randomly assigned to vaccine (n=216, 24 for each dose level [2/4/8 μg] in each of three age cohorts [3–5, 6–12, and 13–17 years]) or control (n=72, 24 for each age cohort [3–5, 6–12, and 13–17 years]) in phase 1.
> In phase 2, 810 participants were screened and 720 eligible participants were randomly assigned and allocated to vaccine (n=540, 60 for each dose level [2/4/8 μg] in each of three age cohorts [3–5, 6–12, and 13–17 years]) or control (n=180, 60 for each age cohort [3–5, 6–12, and 13–17 years]).
> The most common injection site adverse reaction was pain ([4%] in all vaccination groups of the 3–5 years cohort; [9.1%] in all vaccination groups and [1.2%] in the control group of the 6–12 years cohort; [7.9%] in all vaccination groups of the 13–17 years cohort). The most common systematic adverse reaction was fever ([12.7%] in all vaccination groups and [7.1%] in the control group of the 3–5 years cohort; [5.2%] in the vaccination groups and [1.2%] in the control group of the 6–12 years cohort; [10.3%] in all vaccination groups and [9.5%] in the control group of the 13–17 years cohort). Adverse reactions were mostly mild to moderate in severity.
> The neutralising antibody GMT against the SARS-CoV-2 virus ranged from 105·3 to 180·2 in the 3–5 years cohort, 84·1 to 168·6 in the 6–12 years cohort, and 88.0 to 155.7 in the 13–17 years cohort on day 28 after the second vaccination; and ranged from 143·5 to 224·4 in the 3–5 years cohort, 127 to 184·8 in the 6–12 years cohort, and 150·7 to 199·7 in the 13–17 years cohort on day 28 after the third vaccination.
The inactivated COVID-19 vaccine BBIBP-CorV is safe and well tolerated at all tested dose levels in participants aged 3–17 years.BBIBP-CorV also elicited robust humoral responses against SARS-CoV-2 infection after two doses. Our findings support the use of a 4 μg dose and two-shot regimen BBIBP-CorV in phase 3 trials in the population younger than 18 years to further ascertain its safety and protection efficacy against COVID-19. |
Comparison of RT-PCR Cycle Threshold Values from Respiratory Specimens in Symptomatic and Asymptomatic Children with SARS-CoV-2 Infection

John S., et al.
USA
gotopaper

Diagnostic

We sought to determine whether children deemed to be asymptomatic had a difference in the PCR cycle threshold (Ct) value of respiratory samples from symptomatic children with SARS-CoV-2 infection.

Methods

> Retrospective cross-sectional study to compare PCR Ct values of children who tested positive for SARS-CoV-2 by respiratory samples collected over a 4-month period at a large tertiary care children’s hospital.

Findings

> We analyzed 728 children who tested positive for SARS-CoV-2 by RT-PCR from a respiratory sample over a 4-month period and for whom data was available in the electronic medical record. Overall, 71.2% of infected children were symptomatic.

> The mean Ct value for symptomatic patients (Ct mean 19.9, SD 6.3) was significantly lower than asymptomatic patients (Ct mean 23.5, SD 6.5) (P value < 0.001, CI 95th 2.6 - 4.6). The mean PCR Ct value was lowest in children less than 5 years of age.

In this retrospective review of children who tested positive by RT-PCR for SARS CoV-2, the mean Ct was significantly lower in symptomatic children and was lowest in children under 5 years of age, indicating that symptomatic children and younger children infected with SARS-CoV-2 may have a higher viral load in the nasopharynx compared to asymptomatic children. Further studies are needed to assess the transmission potential from asymptomatic children.

Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection

Smith N., et al.
France
gotopaper

Immunology

Background: coordinated local mucosal and systemic immune responses following SARS-CoV-2 infection either protect against COVID-19 pathologies or fail, leading to severe clinical outcomes.

Aim: to understand the coordinated immune response to SARS-CoV-2 - integrated analysis of SARS-CoV-2 spike-specific antibodies, cytokines, viral load and bacterial communities in paired nasopharyngeal swabs and plasma samples from a cohort of clinically distinct patients with COVID-19 during acute infection.

Results

> Plasma viral load was associated with systemic inflammatory cytokines that were elevated in severe COVID-19, and also with spike-specific neutralizing antibodies.

> By contrast, nasopharyngeal viral load correlated with SARS-CoV-2 humoral responses but inversely with interferon responses, the latter associating with protective microbial communities.

> Potential pathogenic microorganisms, often implicated in secondary respiratory infections, were associated with mucosal inflammation and elevated in severe COVID-19.

These results demonstrate distinct tissue compartmentalization of SARS-CoV-2 immune responses and highlight a role for the nasopharyngeal microbiome in regulating local and systemic immunity that determines COVID-19 clinical outcomes.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEJM 15SEP2021</td>
<td>Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months</td>
<td>Thomas S.J., et al. USA gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to evaluate the efficacy against laboratory-confirmed Covid-19 and safety of BNT162b2 vaccine, 6 months after full immunisation. Study population: 44,165 participants ≥16 year-old and 2264 participants 12-15 year-old who received two 30-μg doses, at 21 days apart, of BNT162b2 or placebo. Results: BNT162b2 continued to be safe and have an acceptable adverse-event profile. Vaccine efficacy against Covid-19 was 91.3% (95% CI, 89.0 to 93.2) through 6 months of follow-up among the participants without evidence of previous SARS-CoV-2 infection. There was a gradual decline in vaccine efficacy. Vaccine efficacy of 86 to 100% was seen across countries and in populations with diverse ages, sexes, race or ethnic groups, and risk factors for Covid-19 among participants without evidence of previous infection with SARS-CoV-2. Vaccine efficacy against severe disease was 96.7% (95% CI, 80.3 to 99.9). In South Africa, where the SARS-CoV-2 variant of concern B.1.351 (or beta) was predominant, a vaccine efficacy of 100% (95% CI, 53.5 to 100) was observed. Through 6 months of follow-up and despite a gradual decline in vaccine efficacy, BNT162b2 had a favorable safety profile and was highly efficacious in preventing Covid-19.</td>
</tr>
<tr>
<td>NEJM 15SEP2021</td>
<td>Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel</td>
<td>Bar-On Y.M., et al. Israel gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to evaluate the effect of a third dose (booster) of NNT162b2 on the rate of confirmed Covid-19 and the rate of severe illness. Study population: 1,137,804 persons ≥60 year-old and had been fully vaccinated at least 5 months earlier. Results: At least 12 days after the booster dose, the rate of confirmed infection was lower in the booster group than in the nonbooster group by a factor of 11.3 (95%CI, 10.4 to 12.3). The rate of severe illness was lower by a factor of 19.5 (95% CI, 12.9 to 29.5). In a secondary analysis, the rate of confirmed infection at least 12 days after vaccination was lower than the rate after 4 to 6 days by a factor of 5.4 (95% CI, 4.8 to 6.1). In this study the rates of confirmed Covid-19 and severe illness were substantially lower among those who received a booster (third) dose of the BNT162b2 vaccine.</td>
</tr>
<tr>
<td>Nature Med. 15SEP2021</td>
<td>Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis</td>
<td>Choi A., et al. USA gotopaper</td>
<td>Vaccines</td>
<td>Aim: exploratory interim analysis to evaluate the primary objectives of safety and immunogenicity of a single booster dose of mRNA-1273 or variant-modified mRNAs, including multivalent mRNA-1273.211. Participants: received a two-dose primary series of the COVID-19 vaccine mRNA-1273 approximately 6 months earlier. Analysis includes preliminary descriptive results only of four booster groups (n = 20 per group). Results: Immediately before the booster dose, neutralizing antibodies against wild-type D614G virus had waned (P < 0.0001) relative to peak titers against wild-type D614G measured 1 month after the primary series, and neutralization titers against B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) VOCs were either low or undetectable. Both the mRNA-1273 booster and variant-modified boosters were safe and well-tolerated. All boosters, including mRNA-1273, numerically increased neutralization titers against the wild-type D614G virus compared to peak titers against wild-type D614G measured 1 month after the primary series; significant increases were observed for mRNA-1273 and mRNA-1273.211 (P < 0.0001). In addition, all boosters increased neutralization titers against key VOCs and VOIs, including B.1.351, P.1 and B.1.617.2, that were statistically equivalent to peak titers measured after the primary vaccine series against wild-type D614G virus, with superior titers against some VOIs. This trial is ongoing.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Science** 14SEP2021 | Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells | Mateus J., et al. USA gotopaper | Vaccines | **Aim:** to evaluate Vaccine-specific CD4+ T cell, CD8+ T cell, binding antibody, and neutralizing antibody responses to the 25-μg Moderna mRNA-1273 vaccine, over 7 months post-immunization, including multiple age groups.
> Vaccine-generated spike-specific memory CD4+ T cells 6 months post-boost were comparable in quantity and quality to COVID-19 cases, including the presence of T follicular helper cells and IFN-γ-expressing cells.
> Spike-specific CD8+ T cells were generated in 88% of subjects, with equivalent memory at 6 months post-boost compared to COVID-19 cases.
> Subjects with pre-existing cross-reactive CD4+ T cell memory had increased CD4+ T cell and antibody responses to the vaccine, demonstrating the biological relevance of SARS-CoV-2-cross-reactive CD4+ T cells.
> Anti-spike IgG, anti-RBD IgG, and PSV-neutralizing titers were approximately twofold higher in 100-μg vaccinees compared to those receiving 25-μg doses. Spike-specific CD4+ T cells responses were ~1.4- to 2.0-fold higher in 100-μg vaccinees compared to 25-μg vaccinees.
These findings show substantial immune responses and immune memory to a low-dose RNA vaccine and indicate biological relevance of cross-reactive memory T cells. |
| **Lancet Infect Dis.** 14SEP2021 | Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial | Ader F., et al. France gotopaper | Therapeutics | **Aim:** to evaluate the clinical efficacy of remdesivir plus standard of care (SoC) compared with SoC alone in patients admitted to hospital with COVID-19, with indication of oxygen or ventilator support.
> **Study group:** Adult patients (aged ≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and illness of any duration with clinical evidence of hypoxaemic pneumonia, or required oxygen supplementation.
> **DisCoVeRy:** Randomisation (1:1:1:1:1) to receive SoC alone or in combination with remdesivir, lopinavir–ritonavir, lopinavir–ritonavir and interferon beta-1a, or hydroxychloroquine.
> **Treatment:** Remdesivir 200 mg intravenous infusion on day 1, followed by one daily infusion of 100 mg up to 9 days (total duration of 10 days).
Primary outcome: clinical status at day 15 measured by the WHO seven-point ordinal scale.
Results
> Between March 22, 2020, and Jan 21, 2021, 857 participants were enrolled and randomly assigned to remdesivir + SoC (n=429) or SoC only (n=428).
> At day 15, the distribution of the WHO ordinal scale was: (1) not hospitalised, no limitations on activities (61 [15%] of 414 in the remdesivir group vs 73 [17%] of 418 in the control group); (2) not hospitalised, limitation on activities (129 [31%] vs 132 [32%]); (3) hospitalised, requiring supplemental oxygen (50 [12%] vs 29 [7%]); (4) hospitalised, requiring supplemental oxygen (76 [18%] vs 67 [16%]); (5) hospitalised, on non-invasive ventilation or high flow oxygen devices (15 [4%] vs 14 [3%]); (6) hospitalised, on invasive mechanical ventilation or extracorporeal membrane oxygenation (62 [15%] vs 79 [19%]); (7) death (21 [5%] vs 24 [6%]).
> The difference between treatment groups was not significant (odds ratio 0.98 [95% CI 0.77–1.25]; p=0.85).
> There was no significant difference in the occurrence of serious adverse events between treatment groups (remdesivir, 135 [33%] of 406 vs control, 130 [31%] of 418; p=0.48).
> Three deaths (acute respiratory distress syndrome, bacterial infection, and hepatorenal syndrome) were considered related to remdesivir by the investigators, but only one by the sponsor’s safety team (hepatorenal syndrome).
No clinical benefit was observed from the use of remdesivir in patients who were admitted to hospital for COVID-19, were symptomatic for more than 7 days, and required oxygen support. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Transl Med. 14SEP2021 | Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern | Cho Y., et al. USA gotopaper | Therapeutics | Background The emergence SARS-CoV-2 variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein.

Findings
> 216 MAB targeting SARS-CoV-2 isolated from patients with COVID19.
> The three most potent antibodies targeted distinct regions of the receptor-binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants.
> The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484 and N501.
> Bispecific antibodies were designed by combining non-overlapping specificities.
> Five bispecific antibodies were obtained. They inhibited SARS-CoV-2 infection at concentrations of less than 1 ng/mL.
> Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain-RBD specificities.
> One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose.
> Notably, two bispecific antibodies comparably neutralized the Alpha, Beta, Gamma and Delta variants and wild-type virus.
> A bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation.

Bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern. |
> Open-label, cluster-randomised, controlled trial in secondary schools and further education colleges in England
> Schools were randomly assigned (1:1) to self-isolation of school-based COVID-19 contacts for 10 days (control) or to voluntary daily lateral flow device (LFD) testing for 7 days with LFD-negative contacts remaining at school (intervention).

Findings
> Between March 18 and May 4, 2021, 204 schools were taken through the consent process, during which three decided not to participate further. 201 schools were randomly assigned (control group n=99, intervention group n=102) in the 10-week study (April 19–May 10, 2021), which continued until the pre-appointed stop date (June 27, 2021)
> 76 control group schools and 86 intervention group schools actively participated; additional national data allowed most non-participating schools to be included in analysis of coprimary outcomes. 2432 (42.4%) of 5763 intervention group contacts participated in daily contact testing.
> There were 657 symptomatic PCR-confirmed infections during 7 782 537 days-at-risk (59·1 per 100 000 per week) in the control group and 740 during 8 379 749 days-at-risk (61·8 per 100 000 per week) in the intervention group (intention-to-treat adjusted incidence rate ratio [aIRR] 0·96 [95% CI 0·75–1·22]; p=0·72; CACE aIRR 0·86 [0·55–1·34])
> Among students and staff, there were 59 422 (1·62%) COVID-19-related absences during 3 659 017 person-school-days in the control group and 51 541 (1·34%) during 3 845 208 person-school-days in the intervention group (intention-to-treat aIRR 0·80 [95% CI 0·54–1·19]; p=0·27; CACE aIRR 0·61 [0·30–1·23])

Daily contact testing of school-based contacts was non-inferior to self-isolation for control of COVID-19 transmission (similar rates of symptomatic infections). Infection rates in school-based contacts were low, and few school contacts tested positive. Daily contact testing should be considered as a safe alternative to home isolation. |
Journal and date	Title	Authors and link	Field of expertise	Key facts
Nature 13SEP2021 | Virus-induced senescence is driver and therapeutic target in COVID-19 | Lee S., et al. Germany gotopaper | Virology | > Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and accompanied by a senescence-associated secretory phenotype (SASP), composed of pro-inflammatory cytokines, extracellular matrix-active factors and pro-coagulatory mediators. > COVID-19 patients displayed markers of senescence in their airway mucosa in situ and elevated serum levels of SASP factors

Findings
> Mirroring COVID-19 hallmark features such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue, in vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, neutrophil extracellular trap (NET) formation as well as activation of platelets and the clotting cascade in response to supernatant of VIS cells, including SARS-CoV-2-induced senescence
> Senolytics such as Navitoclax and Dasatinib/Quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-driven hamster and mouse models
VIS could be as pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest senolytic targeting of virus-infected cells as a novel treatment option against SARS-CoV-2.

Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: a sentinel surveillance study | Sauré D., et al. Chile gotopaper | Vaccines - Immunisation | Background
> 81·3 % of adults (aged ≥18 years) in Chile had received a first SARS-CoV-2 vaccine and 72·3% had received a second SARS-CoV-2 vaccine
> Sinovac’s inactivated CoronaVac vaccine (75·3% of vaccines dispensed) vs Pfizer–BioNTech’s mRNA BNT162b2 vaccine (20·9% of vaccines dispensed).
> Comparison of SARS-CoV-2 IgG positivity between vaccines using a dynamic national monitoring strategy.

Methods
> Comparison of the proportion of individuals testing positive for anti-SARS-CoV-2 IgG across sites between recipients of CoronaVac and BNT162b2.
> Unvaccinated participants served as a control population

Findings
> Of 64 813 individuals enrolled, 56 261 were included in the final analysis, of whom 33 533 (59.6%) had received at least one dose of the CoronaVac vaccine, 8947 (15.9%) had received at least one dose of the BNT162b2 vaccine, and 13 783 (24.5%) had not received a vaccine.
> SARS-CoV-2 IgG positivity during week 4 after the first dose of CoronaVac was 28·1% (95% CI 25·0–31·2; 220 of 783 individuals), reaching a peak of 77·4% (75·5–79·3; 1473 of 1902 individuals) during week 3 after the second dose.
> SARS-CoV-2 IgG positivity during week 4 after the first dose of the BNT162b2 vaccine was 79·4% (75·7–83·1; 367 of 462 individuals), increasing to 96·5% (94·9–98·1; 497 of 515 individuals) during week 3 after the second dose and remaining above 92% until the end of the study.
> For unvaccinated individuals, IgG seropositivity ranged from 6·0% (4·4–7·6; 49 of 810 individuals) to 18·7% (12·5–24·9; 28 of 150 individuals) during the 5 month period.
> Regression analyses showed that IgG seropositivity was significantly lower in men than women and in people with diabetes or chronic diseases for CoronaVac vaccine recipients (p<0·0001), and for individuals aged 60 years and older compared with people aged 18–39 years for both vaccines (p<0·0001), 3–16 weeks after the second dose.

Conclusions
IgG seropositivity was lower after CoronaVac than after BNT162b2 and declined over time since vaccination for CoronaVac recipients but not BNT162b2 recipients. Prolonged IgG monitoring will allow further evaluation of seropositivity overtime.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clin Microbiol Infec. 08SEP2021</td>
<td>Decline of antibody titres three months after two doses of BNT162b2 in non-immunocompromised adults</td>
<td>Erice A., et al. Spain gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>To assess the antibody response in non-immunocompromised adults after two doses of BNT162b2</td>
</tr>
<tr>
<td>Methods</td>
<td>> Prospective, single-centre observational study in non-immunocompromised adults > 18 years of age who received two doses of BNT162b2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> The study contemplates analyses of serum samples collected 1.5, 3, 6, 9 and 12 months after the second dose of BNT162b2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Findings</td>
<td>> Of 273 hospital workers who received two doses of BNT162b2, 260/273 (95%) agreed to participate in the study; 2/260 (0.8%) were excluded due to immunocompromised conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> At the time of this report, 230/258 (89%) subjects [mean age: 46.0 years (SD 11.4 years); 143/230 (62%) females; 87/230 (38%) males] had completed three months of follow-up after the second dose of BNT162b2. Thirty-six (16%) subjects (36/230) had documented mild SARS-CoV-2 infection prior to receiving the first dose of BNT162b2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Median [IQR] anti-RBD titres 1.5 months after vaccination were 9,356 [5,844 - 16,876] AU/mL; three months after vaccination, median anti-RBD titres had declined to 3,952 [2,190 - 8,561] AU/mL (p <0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Of 199/230 (86.5%) participants who had anti-RBD titres above 4,160 AU/mL 1.5 months after the second dose of BNT162b2, only 95/230 (41%) maintained anti-RBD titres above this level three months after vaccination (p < 0.001).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> The decline of anti-RBD antibodies 3 months after the 2nd dose of BNT162b2 is of concern as it raises the possibility of a short-lived humoral immunity after vaccination. Booster doses of BNT162b2 might be required to maintain high titers of anti-RBD antibodies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JAMA 08SEPT2021</th>
<th>Spontaneous Abortion Following COVID-19 Vaccination During Pregnancy</th>
<th>Khabanda E.O., et al. USA gotopaper</th>
<th>Vaccines - Immunisation</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on maternal COVID-19 vaccine safety come primarily from passive surveillance, and studies lack an unvaccinated comparison group. Spontaneous abortion has been identified as a priority outcome in studies of maternal vaccine safety, and concerns regarding risks of spontaneous abortion exist.</td>
<td>Findings</td>
<td>> Of 105 446 unique pregnancies, 13 160 spontaneous abortions and 92 286 ongoing pregnancies were identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Overall, 7.8% of women received 1 or more BNT162b2 (Pfizer-BioNTech) vaccines; 6.0% received 1 or more mRNA-1273 (Moderna) vaccines; and 0.5% received an Ad26.COV.2.S (Janssen) vaccine during pregnancy and before 20 weeks’ gestation.</td>
<td>> A COVID-19 vaccine was received within 28 days prior to an index date among 8.0% of ongoing pregnancy periods vs 8.6% of spontaneous abortions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> The proportion of women aged 35 through 49 years with spontaneous abortions was higher (38.7%) than with ongoing pregnancies (22.3%).</td>
<td>> Spontaneous abortions did not have an increased odds of exposure to a COVID-19 vaccination in the prior 28 days compared with ongoing pregnancies (adjusted odds ratio, 1.02; 95% CI, 0.96-1.08).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> A COVID-19 vaccine was received within 28 days prior to an index date among 8.0% of ongoing pregnancy periods vs 8.6% of spontaneous abortions.</td>
<td>> Results were consistent for mRNA-1273 and BNT162b2 and by gestational age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td>Among women with spontaneous abortions, the odds of COVID-19 vaccine exposure were not increased in the prior 28 days compared with women with ongoing pregnancies.</td>
<td>Limitations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> gestational age of spontaneous abortions and ongoing pregnancies were not chart confirmed; pregnancy dating may be inaccurate.</td>
<td>> although vaccination status was identified using multiple data sources, COVID-19 vaccine rollout has been complex and some vaccines may have been missed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> data on important confounders, such as prior pregnancy history, were not available.</td>
<td>> it was not possible to assess risks specific to the Ad26.COV.2.S vaccine given the small number of exposures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NEJM 08SEP2021</td>
<td>Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings</td>
<td>Thompson M.G., et al. USA</td>
<td>Vaccines</td>
<td>Methods > We conducted a study involving adults (≥50 years of age) with Covid-19–like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) > We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. Findings > The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit > The effectiveness of full vaccination with respect to a Covid-19–associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults > The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection.</td>
</tr>
<tr>
<td>NEJM 08SEPT21</td>
<td>Receipt of mRNA Covid-19 Vaccines and Risk of Spontaneous Abortion</td>
<td>Zauche L.H., et al. USA</td>
<td>Vaccines - Immunisation</td>
<td>Background Data to inform estimates of the risk of spontaneous abortion after receipt of an mRNA Covid-19 vaccine either before conception (30 days before the first day of the last menstrual period through 14 days after) or during pregnancy are limited. Findings > A total of 2456 participants who were enrolled in the CDC v-safe Covid-19 pregnancy registry met the inclusion criteria for this study; > 2022 participants reported ongoing pregnancies at 20 weeks of gestation, 165 participants reported a spontaneous abortion (154 participants before 14 weeks of gestation), 65 participants with most recent contact during the first trimester could not be reached for second trimester follow-up, 188 participants completed second trimester follow-up before 20 weeks of gestation, and 16 participants reported another pregnancy outcome before 20 weeks (induced abortion or ectopic or molar pregnancy) > Most participants were 30 years of age or older (77.3%) > Slightly more than half the participants (52.7%) had received the BNT162b2 vaccine (Pfizer-BioNTech) > The cumulative risk of spontaneous abortion from 6 to less than 20 weeks of gestation was 14.1% (95% confidence interval [CI], 12.1 to 16.1) in the primary analysis and 12.8% (95% CI, 10.8 to 14.8) in an analysis using direct maternal age-standardization to the reference population. > The cumulative risk of spontaneous abortion increased with maternal age. > In the sensitivity analysis, under the extreme assumption that all 65 participants with most recent contact during the first trimester had a spontaneous abortion, the cumulative risk of spontaneous abortion from 6 to less than 20 weeks of gestation was 18.8% (95% CI, 16.6 to 20.9); after age standardization, the cumulative risk was 18.5% (95% CI, 16.1 to 20.8). Conclusion > The cumulative risks of spontaneous abortion from primary and sensitivity analyses were within the expected risk range. Limitations: lack of a control group of unvaccinated pregnant persons, the homogeneity of the participants in terms of racial and ethnic groups and occupation, the voluntary enrollment of the population, and the use of data reported by the participants themselves, including some data collected retrospectively.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Lancet Rheumatol. 07SEP2021 | Humoral and cellular responses to mRNA vaccines against SARS-CoV-2 in patients with a history of CD20 B-cell-depleting therapy (RituxiVac): an investigator-initiated, single-centre, open-label study | Moor M.B., et al. Switzerland [gotopaper](#) | Vaccines - Immunisation | **Aim:** to investigate humoral and cell-mediated immune responses to SARS-CoV-2 mRNA-based vaccines in patients receiving CD20-targeted B-cell-depleting agents (rituximab or ocrelizumab).
Primary outcome: proportion of patients with a history of anti-CD20 treatment who showed a humoral immune response against the SARS-CoV-2 spike protein in comparison with immunocompetent controls.
Secondary endpoints: effect of anti-CD20 therapy on humoral or cell-mediated immune responses to SARS-CoV-2 vaccination, and biomarkers of immunocompetence.
Results
> Study population: 96 patients and 29 immunocompetent controls. The median age of patients was 67 years (IQR 57–72) and of controls was 54 years (45–62). 51/96 (53%) patients and 19/29 (66%) controls were female. Median time since last anti-CD20 treatment was 1.07 years (IQR 0.48–2.55) and median cumulative dose of an anti-CD20 depleting agent was 2.80 g (1.50–5.00).
> Anti-spike IgG antibodies were detected in 47/96 (49%) patients 1.79 months (IQR 1.16–2.48) after the second vaccine dose compared to 29/29 (100%) controls 1.81 months (1.17–2.48) after the second vaccine dose (p<0.001).
> SARS-CoV-2-specific IFNγ release was detected in 13/66 (20%) patients and 21/28 (75%) healthy controls (p=0.001).
> Only 9/66 (14%) patients were double positive for anti-SARS-CoV-2 spike IgG and cell-mediated responses, compared with 21/28 (75%) healthy controls (p<0.001).
> Time since last anti-CD20 therapy (>7.6 months; positive predictive value 0.78), peripheral CD19+ cell count (>27 cells per μL; positive predictive value 0.70), and CD4+ lymphocyte count (>653 cells per μL; positive predictive value 0.71) were predictive of humoral vaccine response (area under the curve [AUC] 67% [95% CI 56–78] for time since last anti-CD20 therapy, 67% [55–80] for peripheral CD19+ count, and 66% [54–79] for CD4+ count).

This study provides evidence of blunted humoral and cell-mediated immune responses elicited by SARS-CoV-2 mRNA vaccines in patients with a history of CD20 B-cell-depleting treatment. Lymphocyte subpopulation counts were associated with vaccine response. **Aim:** to examine whether deficits immunologic resilience (IR - a sexually dimorphic protective attribute) that antedate or are induced by SARS-CoV-2 infection independently predict COVID-19 mortality.
- IR levels were quantified with two novel metrics: immune health grades (IHG-I [best] to IHG-IV) to gauge CD8+ and CD4+ T-cell count equilibrium, and blood gene expression signatures.
- IR metrics were examined in a prospective COVID-19 cohort (n=522); primary outcome was 30-day mortality.

Results
> IHG-I, tracking high-grade equilibrium between CD8+ and CD4+ T-cell counts, was the most common grade (73%) among healthy adults, particularly in females.
> SARS-CoV-2 infection associated with underrepresentation of IHG-I (21%) vs. overrepresentation (77%) of IHG-II or IHG-IV, especially in males vs. females (P<0.01).
> Presentation with IHG-I associated with 88% lower mortality, after controlling for age and sex; reduced risk of hospitalization and respiratory failure; lower plasma IL-6 levels; rapid clearance of nasopharyngeal SARS-CoV-2 burden; and gene expression signatures correlating with survival that signify immunocompetence and controlled inflammation.
> In non-COVID-19 cohorts, IR-preserving metrics associated with resistance to progressive influenza or HIV infection, as well as lower 9-year mortality in the Framingham Heart Study, especially in females.

Preservation of immunocompetence with controlled inflammation during antigenic challenges is a hallmark of IR and associates with longevity and AIDS resistance. Independent of age, a male-biased proclivity to degrade IR before and/or during SARS-CoV-2 infection predisposes to severe COVID-19.
Nature
06SEP2021

SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

Mlochova,P., et al.
UK
gotopaper

Field of expertise: Variants

> In vitro, B.1.617.2 (Delta) is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to vaccine-elicited antibodies as compared to wild type (WT) Wuhan-1 bearing D614G. Serum neutralising titres against B.1.617.2 were lower in ChAdOx-1 versus BNT162b2 vaccinees.
> B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies against the receptor binding domain (RBD) and N-terminal domain (NTD).
> B.1.617.2 demonstrated higher replication efficiency in both airway organoid and human airway epithelial systems compared to B.1.1.7, associated with B.1.617.2 spike in a predominantly cleaved state compared to B.1.1.7.
> The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralising antibody as compared to WT spike.
> Additionally we observed that B.1.617.2 had higher replication and spike mediated entry as compared to B.1.617.1, potentially explaining B.1.617.2 dominance.
> In an analysis of over 130 SARS-CoV-2 infected healthcare workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx-1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding.
> Compromised vaccine efficacy against the highly fit and immune evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

JAMA
03SEP2021

Surveillance for Adverse Events After COVID-19 mRNA Vaccination

Klein N.P., et al.
USA
gotopaper

Field of expertise: Vaccines

Aim: To monitor 23 serious outcomes weekly, using comprehensive health records on a diverse population after receipt of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccination.

Main Outcomes: Incidence of serious outcomes (acute myocardial infarction, Bell palsy, cerebral venous sinus thrombosis, Guillain-Barré syndrome, myocarditis/pericarditis, pulmonary embolism, stroke, thrombosis with thrombocytopenia syndrome) that occurred among vaccine recipients 1–21 days after 1 or 2 vaccine doses was compared with that of vaccinated individuals 22–42 days after 2nd dose.

Results: A total of 11,845,128 doses of mRNA vaccines (57% BNT162b2; 6,175,813 first doses and 5,669,315 second doses) were administered to 6.2 million individuals (mean age, 49 years; 54% female individuals).
> The incidence of events per 1 000 000 person-years during the risk vs comparison intervals for ischemic stroke was 1612 vs 1781 (RR, 0.97; 95% CI, 0.87–1.08); for appendicitis, 1179 vs 1345 (RR, 0.82; 95% CI, 0.73–0.93); and for acute myocardial infarction, 935 vs 1030 (RR, 1.02; 95% CI, 0.89–1.18).
> Incidence of confirmed anaphylaxis was 4.8 (95% CI, 3.2–6.9) per million doses of BNT162b2 and 5.1 (95% CI, 3.3–7.6) per million doses of mRNA-1273.

In this interim analysis, incidence of selected serious outcomes was not significantly higher 1 to 21 days postvaccination compared with 22 to 42 days postvaccination.

Clin Infect Dis.
02SEP2021

Evolution of COVID-19 symptoms during the first 12 months after illness onset

Wynberg E., et al.
Netherlands
gotopaper

Field of expertise: Long Covid

Aim: to evaluate symptom onset, severity and recovery across the full spectrum of disease severity, up to one year after illness onset.

Results: 11 May 2020–1 May 2021, 342 COVID-19 patients (192[56%] male) were enrolled, of whom 99/342 (29%) had mild, 145/342 (42%) moderate, 56/342 (16%) severe and 42/342 (12%) critical disease.
> The proportion of participants who reported at least one persistent symptom at 22 to 42 days postvaccination compared with that of vaccinated individuals 22–42 days after 2nd dose.

COVID-19 symptoms persisted for one year after illness onset, even in some individuals with mild disease.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Med. 03SEP2021</td>
<td>Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial</td>
<td>Kyriazopoulou, E., et al. Greece</td>
<td>Therapeutics</td>
<td>Early increase of soluble urokinase plasminogen activator receptor (suPAR) serum levels is indicative of increased risk of progression of coronavirus disease 2019 (COVID-19) to respiratory failure</td>
</tr>
</tbody>
</table>

- All covid-19 cases in adults aged 21 to 65 (n=132 420) and a random sample of controls matched on age, sex, and general practice (n=1 306 566).
- Primary outcome: hospital admission with covid-19 within 28 days of a positive test result, or receiving a diagnosis of covid-19 on discharge from hospital. Severe covid-19 was defined as being admitted to intensive care or dying within 28 days of a positive test result.

Results

- The risk (cumulative incidence) of hospital admission with covid-19 was <1% for all adults of working age in the general population.
- Over the study period, in conditional logistic regression models adjusted for age, sex, general practice, race/ethnicity, deprivation, number of comorbidities, and number of adults in the household, teachers showed a lower risk of hospital admission with covid-19 (rate ratio 0.77, 95% confidence interval 0.64 to 0.92) and of severe covid-19 (0.56, 0.33 to 0.97) than the general population.
- In the first period when schools in Scotland reopened, in autumn 2020, the rate ratio for hospital admission in teachers was 1.20 (0.89 to 1.61) and for severe covid-19 was 0.45 (0.13 to 1.55).
- The corresponding findings for household members of teachers were 0.91 (0.67 to 1.23) and 0.73 (0.37 to 1.44), and for patient facing healthcare workers were 2.08 (1.73 to 2.50) and 2.26 (1.43 to 3.59).
- Similar risks were seen for teachers in the second period, when schools reopened in summer 2021. These values were higher than those seen in spring/summer 2020, when schools were mostly closed.

Compared with adults of working age who are otherwise similar, teachers and their household members were not found to be at increased risk of hospital admission with covid-19 and were found to be at lower risk of severe covid-19.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Microbiol Infect. 02SEPT2021 | **Time to resolution of respiratory and systemic COVID-19 symptoms in community setting** | Dinh A., et al. France gotopaper | Public Health / Epidemiology | Our aim was to assess the time to resolution of respiratory and systemic symptoms and their associated factors.
Method > Cohort study including adult outpatients, managed with Covidom, a telesurveillance solution, with RT-PCR confirmed diagnosis, from March 9th 2020 until February 23rd 2021. Follow-up was 30 days after symptom onset.
Findings > Among the 9,667 patients included, mean age was 42.2±14.0 years, and 67.5% were female (n=6,522). Median body mass index (BMI) (IQR) was 25.0 kg/m2 (22.1–28.8). Main comorbidities were: hypertension (12.9%; n=1247), asthma (11.0%; n=1063), and diabetes mellitus (5.5%; n=527). > The most frequent symptom during follow-up was dyspnea (65.1%; n=6,296), followed by tachypnea (49.9%; n=4,821), shivers (45.6%; n=4,410), and fever (36.7%; n=3,550). > Median time to resolution of systemic and respiratory symptoms were 3 days (95% CI: 2–4) and 7 days (95% CI: 6–8), respectively. > Ultimately, 17.2% (95% CI: 15.7%–18.8%) still presented respiratory symptoms at day 30. Longer time to respiratory symptom resolution was associated with older age, increased BMI, chronic obstructive pulmonary disease (COPD), coronary artery disease, asthma, and heart failure. > Regarding systemic symptoms, coronary artery disease, asthma, age above 40 years, and elevated BMI were associated with longer time to resolution. | **Time to symptom resolution among outpatients with COVID-19** seemed shorter for systemic than respiratory symptoms. Prolonged respiratory symptoms were common at day 30. Risk factors associated with later resolution included age, cardiovascular and pulmonary diseases. |
Method > In this phase 3, double-blind, randomised, placebo-controlled trial, participants were enrolled from 101 centres across 12 countries in Asia, Europe, North America, and South America. > The composite primary endpoint was the proportion who progressed to high-flow oxygen, non-invasive ventilation, invasive mechanical ventilation, or death by day 28, assessed in the intention-to-treat population.
Findings > Between June 11, 2020, and Jan 15, 2021, 1525 participants were randomly assigned to the baricitinib group (n=764) or the placebo group (n=761). 1204 (79·3%) of 1518 participants with available data were receiving systemic corticosteroids at baseline, of whom 1099 (91·3%) were on dexamethasone; 287 (18·9%) participants were receiving remdesivir. > Overall, 27·8% of participants receiving baricitinib and 30·5% receiving placebo progressed to meet the primary endpoint (odds ratio 0·85 [95% CI 0·67 to 1·08], p=0·18), with an absolute risk difference of −2·7 percentage points (95% CI −7·3 to 1·9). The 28-day all-cause mortality was 8% (n=62) for baricitinib and 13% (n=100) for placebo (hazard ratio [HR] 0·57 [95% CI 0·41–0·78]; nominal p=0·0018), a 38·2% relative reduction in mortality; one additional death was prevented per 20 baricitinib-treated participants. > The 60-day all-cause mortality was 10% (n=79) for baricitinib and 15% (n=116) for placebo (HR 0·62 [95% CI 0·47–0·83]; p=0·0050). > The frequencies of serious adverse events (110 [15%] of 750 in the baricitinib group vs 135 [18%] of 752 in the placebo group), serious infections (64 [9%] vs 74 [10%]), and venous thromboembolic events (20 [3%] vs 19 [3%]) were similar between the two groups. |
Aim: To assess the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44–45 weeks) between the first and second dose, and response to a third dose as a booster given 28–38 weeks after the second dose.

- Volunteers aged 18–55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination.
- Report of reactogenicity and immunogenicity of a delayed second dose (44–45 weeks after first dose) or a third dose of the vaccine (28–38 weeks after second dose).
- Data from volunteers aged 18–55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002) trials of ChAdOx1 nCoV-19 and who had previously received one or two doses are used for comparison.

Results

- Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses.
- The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8–12 weeks: 267 [83%] of 321; 15–25 weeks: 24 [7%]; or 44–45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8–12 weeks: 115 [44%] of 261; 15–25 weeks: 116 [44%]; and 44–45 weeks: 30 [11%]).
- 480 participants from the single-dose cohort were assessable for immunogenicity up to 44–45 weeks after vaccination.
- Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83–91·08] vs 1·75 EUs [1·60–1·93]).
- 30 participants who received a late second dose of vaccine 44–45 weeks after the first dose were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525–1764] with an 8–12 week interval; 1860 EUs [917–4934] with a 15–25 week interval; and 3738 EUs [1824–6625] with a 44–45 week interval).
- Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047–6420]) than 28 days after a second dose (median 1792 EUs [IQR 899–4634]; Wilcoxon signed rank test p=0·0043).
- T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs] [IQR 127–389]) immediately before the third dose to 399 SFUs per million PBMCs [314–662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012).
- Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose.

An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet Infect Dis. 01SEP2021 | Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study | Antonelli M., et al. [UK gotopaper](https://doi.org/10.1016/j.ijid.2021.09.027) | Public Health / Epidemiology | **Aim:** to identify risk factors for post-vaccination SARS-CoV-2 infection and describe the characteristics of post-vaccination illness.

Methods
- Prospective, community-based, nested, case-control study on self-reported data from UK-based, adult users of the COVID Symptom Study mobile phone app.
- Risk analysis:
 > Case populations: individuals who had a positive COVID-19 test either >14 days after their first vaccination (cases 1) or > 7 days after their second vaccination (cases 2); and had no positive test before vaccination.
 > Control groups: users reporting a negative test >14 days after their first vaccination but before their second (controls 1) and users reporting a negative test > 7 days after their second vaccination (controls 2).
 > Controls 1 and controls 2 were matched (1:1) with cases 1 and cases 2, respectively, by the date of the post-vaccination test, health-care worker status, and sex.
- Disease profile analysis:
 > Cases population: a sub-selection of participants from cases 1 and cases 2 who had used the app for > 14 consecutive days after testing positive for SARS-CoV-2 (cases 3 and cases 4, respectively).
 > Control group: unvaccinated participants reporting a positive SARS-CoV-2 test who had used the app for > 14 consecutive days after the test
 > Controls were matched (1:1) with cases 3 and 4, respectively, by the date of the positive test, health-care worker status, sex, body-mass index (BMI), and age.

Results
> Between Dec 8, 2020, and July 4, 2021, 1 240 009 COVID Symptom Study app users reported a first vaccine dose, of whom 6030 (0·5%) subsequently tested positive for SARS-CoV-2 (cases 1), and 971 504 reported a second dose, of whom 2370 (0·2%) subsequently tested positive for SARS-CoV-2 (cases 2).
> In the risk factor analysis, frailty was associated with post-vaccination infection in older adults (≥60 years) after their first vaccine dose (odds ratio [OR] 1·93, 95% CI 1·50–2·48; p<0·0001), and individuals living in highly deprived areas had increased odds of post-vaccination infection following their first vaccine dose (OR 1·11, 95% CI 1·01–1·23; p=0·039).
> Individuals without obesity (BMI <30 kg/m2) had lower odds of infection following their first vaccine dose (OR 0·84, 95% CI 0·75–0·94; p=0·0030).
> For the disease profile analysis, 3825 users from cases 1 were included in cases 3 and 906 users from cases 2 were included in cases 4. Vaccination (compared with no vaccination) was associated with reduced odds of hospitalisation or having more than five symptoms in the first week of illness following the first or second dose, and long-duration (≥28 days) symptoms following the second dose.
> Almost all symptoms were reported less frequently in infected vaccinated individuals than in infected unvaccinated individuals, and vaccinated participants were more likely to be completely asymptomatic, especially if they were 60 years or older.

To minimise SARS-CoV-2 infection, at-risk populations must be targeted in efforts to boost vaccine effectiveness and infection control measures.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 01SEP2021 | Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques | Marlin R., et al. International gotopaper | Vaccines | Background
New generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. Targeting vaccine antigens to DCs via surface receptors represents an appealing strategy to improve subunit-vaccine efficacy while reducing the amount of required antigen. CD40-expressing antigen-presenting cells evoke strong antigen-specific T- and B-cell responses
Findings
> Targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model.
> A single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2.
> In the same animal model, vaccine-elicited antibodies cross-neutralized different SARS-CoV-2 variants, including D614G, B.1.1.7 and to a lesser extent B.1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.
Conclusions
The αCD40.RBD vaccine significantly improved immunity of convalescent macaques, resulting in a reduction of viral load following re-exposure to the virus down to levels that may avoid secondary transmission. This vaccine may therefore represent an appropriate booster of pre-existing immunity, either induced by natural infection or previous priming with vector-based vaccines. |
Methods
> Double-blind, randomized, placebo-controlled trial in hospitalized adults requiring oxygen with Covid-19 where patients receiving standard of care were randomized to receive fostamatinib or placebo. The primary outcome was serious adverse events by day 29.
Findings
> A total of 59 patients underwent randomization (30 to fostamatinib and 29 to placebo)
> Serious adverse events occurred in 10.5% of patients in the fostamatinib group compared to 22% in placebo (P = .2)
> Three deaths occurred by day 29, all receiving placebo. The mean change in ordinal score at day 15 was greater in the fostamatinib group (-3.6 ± 0.3 vs. -2.6 ± 0.4, P = .035) and the median length in the ICU was 3 days in the fostamatinib group vs. 7 days in placebo (P = .07). Differences in clinical improvement were most evident in patients with severe or critical disease (median days on oxygen, 10 vs. 28, P = .027). There were trends towards more rapid reductions in C-reactive protein, D-dimer, fibrinogen and ferritin levels in the fostamatinib group.
For COVID-19 requiring hospitalization, the addition of fostamatinib to standard of care was safe and patients were observed to have improved clinical outcomes compared to placebo. These results warrant further validation in larger confirmatory trials. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Ann Intern Med. 31AUG21 | Effect of Immunosuppression on the Immunogenicity of mRNA Vaccines to SARS-CoV-2 | Deepak P., et al. USA gotopaper | Vaccines - Immunisation | Background: Patients with chronic inflammatory disease (CID) treated with immunosuppressive medications have increased risk for severe COVID-19. Although mRNA-based SARS-CoV-2 vaccination provides protection in immunocompetent persons, immunogenicity in immunosuppressed patients with CID is unclear.

Methods: > Prospective observational cohort study in two U.S. CID referral centers.
> Volunteer sample of adults with confirmed CID eligible for early COVID-19 vaccination. Immunocompetent participants were recruited separately from hospital employees.
> All participants received 2 doses of mRNA vaccine against SARS-CoV-2 between 10 December 2020 and 20 March 2021.
> Participants were assessed within 2 weeks before vaccination and 20 days after final vaccination.

Findings: > Most of the 133 participants with CID (88.7%) and all 53 immunocompetent participants developed antibodies in response to mRNA-based SARS-CoV-2 vaccination, although some with CID developed numerically lower titers of anti-S IgG.
> Anti-S IgG antibody titers after vaccination were lower in participants with CID receiving glucocorticoids (n = 17) than in those not receiving them; the geometric mean of anti-S IgG antibodies was 357 (95% CI, 96 to 1324) for participants receiving prednisone versus 2190 (CI, 1598 to 3002) for those not receiving it. Anti-S IgG antibody titers were also lower in those receiving B-cell depletion therapy (BCDT) (n = 10).
> Measures of immunogenicity differed numerically between those who were and those who were not receiving antimetabolites (n = 48), tumor necrosis factor inhibitors (n = 39), and Janus kinase inhibitors (n = 11); however, 95% CIs were wide and overlapped.
> Neutralization titers seemed generally consistent with anti-S IgG results. Results were not adjusted for differences in baseline clinical factors, including other immunosuppressant therapies.

Conclusions: Compared with nonusers, patients with CID treated with glucocorticoids and BCDT seem to have lower SARS-CoV-2 vaccine-induced antibody responses. These preliminary findings require confirmation in a larger study. |
| Nature 31AUG2021 | Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies | Lempp F. A., et al. USA gotopaper | Immunology | > Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies.
> Antibodies to the N-terminal domain (NTD) or to the conserved site at the base of the Receptor Binding Domain (RBD), while poorly neutralizing infection of ACE2 over-expressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the Receptor Binding Motif (RBM), while potently neutralizing infection of ACE2 over-expressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike promoting cell-to-cell fusion.
> Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science 31AUG2021</td>
<td>Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination</td>
</tr>
<tr>
<td>Lancet 28AUG2021</td>
<td>1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study</td>
</tr>
</tbody>
</table>

Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination

Authors and link
- Loyal L., et al. Germany [gotopaper](#)

Field of expertise
- Immunology

Aim: To investigate the functional role of pre-existing SARS-CoV-2- and HCoV-reactive CD4+ T cells.

Methods:
CD4+ T cells from 60 unexposed healthy donors and 59 COVID-19 convalescents as controls were stimulated with peptide pools covering all open reading frames (ORFs) of SARS-CoV-2.

Findings:
- The authors identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that pre-existing spike- and S816-830-reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti-SARS-CoV-2-S1-IgG antibodies.
- The fusion peptide domain (S816-830) was recognized by CD4+ T cells in 20% of unexposed individuals, 50 to 60% of SARS-CoV-2 convalescents, and 97% of BNT162b2-vaccinated individuals.
- Spike-cross-reactive T cells were also activated after primary BNT162b2 COVID-19 mRNA vaccination displaying kinetics similar to secondary immune responses.

Cross-reactive immunity may account for the unexpectedly rapid induction of immunity following primary SARS-CoV-2 immunization and the high rate of asymptomatic/mild COVID-19 disease courses.

1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study

Authors and link

Field of expertise
- Long Covid

Aim: The aim of our study was to comprehensively compare consequences between 6 months and 12 months after symptom onset among hospital survivors with COVID-19.

Methods:
- Ambidirectional cohort study of COVID-19 survivors who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7 and May 29, 2020
- The primary outcomes were symptoms, modified British Medical Research Council (mMRC) score, HRQoL, and distance walked in 6 min (6MWD)

Findings:
- 1276 COVID-19 survivors completed both visits. The median age of patients was 59.0 years (IQR 49.0–67.0) and 681 (53%) were men
- The median follow-up time was 185.0 days (IQR 175.0–198.0) for the 6-month visit and 349.0 days (337.0–361.0) for the 12-month visit after symptom onset
- The proportion of patients with at least one sequelae symptom decreased from 68% (831/1227) at 6 months to 49% (620/1272) at 12 months (p<0.001). The proportion of patients with dyspnea, characterised by mMRC score of 1 or more, slightly increased from 26% (313/1185) at 6-month visit to 30% (380/1271) at 12-month visit (p=0.014).
- Additionally, more patients had anxiety or depression at 12-month visit (26% [331/1271] at 12-month visit vs 23% [274/1187] at 6-month visit; p=0.015).
- No significant difference on 6MWD was observed between 6 months and 12 months.
- 88% (422/479) of patients who were employed before COVID-19 had returned to their original work at 12 months.
- Compared with men, women had an odds ratio of 1.43 (95% CI 1.04–1.96) for fatigue or muscle weakness, 2.00 (1.48–2.69) for anxiety or depression, and 2.97 (1.50–5.88) for diffusion impairment
- Matched COVID-19 survivors at 12 months had more problems with mobility, pain or discomfort, and anxiety or depression, and had more prevalent symptoms than did controls

Most COVID-19 survivors had a good physical and functional recovery during 1-year follow-up, and had returned to their original work and life. The health status in our cohort of COVID-19 survivors at 12 months was still lower than that in the control population.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet Infect Dis. 27AUG2021 | Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study | Twohig K.A., et al. UK gotopaper | Public Health / Epidemiology | **Aim:** to characterise the severity of the delta (B.1.617.2) variant compared with the alpha (B.1.1.7) variant by determining the relative risk of hospital attendance outcomes.
- **Cohort:** all patients with COVID-19 in England (March 29 – May 23, 2021), infected with either the alpha or delta SARS-CoV-2 variant.
Results
> Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included.
> 196 (2.3%) patients with the delta variant versus 764 (2.2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2.26 [95% CI 1.32–3.9]).
> 498 (5.7%) patients with the delta variant versus 1448 (4.2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1.45 [1.08–1.95]).
> Most patients were unvaccinated (32 078 [74.0%] in both groups).
> The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1.94 [95% CI 0.47–8.05] and for hospital admission or emergency care attendance 1.58 [0.69–3.61]) were similar to the HRs for unvaccinated patients (2.32 [1.04–4.17]; p=0.82 for both) but the precision for the vaccinated subgroup was low.
A higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant was observed.

| BMJ 26AUG2021 | Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study | Hippisley-Cox J., et al. UK gotopaper | Clinic | **Aim:** to assess the association between covid-19 vaccines and risk of thrombocytopenia and thromboembolic events in England among adults.
Participants: 29 121 633 people were vaccinated with first doses (19 608 008 with ChAdOx1 nCoV-19 and 9 513 625 with BNT162b2 mRNA) and 1 758 095 people had a positive SARS-CoV-2 test (includes people aged ≥16 years).
Primary outcomes - hospital admission or death associated with thrombocytopenia, venous thromboembolism, and arterial thromboembolism within 28 days of 3 exposures: first dose of the ChAdOx1 nCoV-19 vaccine; first dose of the BNT162b2 mRNA vaccine; and a SARS-CoV-2 positive test.
Secondary outcomes - subsets of the primary outcomes: cerebral venous sinus thrombosis (CVST), ischaemic stroke, myocardial infarction, and other rare arterial thrombotic events.
Results
Primary analyses found:
> Increased risk of thrombocytopenia after ChAdOx1 nCoV-19 vaccination (incidence rate ratio 1.33, 95% CI 1.19 to 1.47 at 8–14 days) and after a positive SARS-CoV-2 test (5.27, 4.34 to 6.40 at 8–14 days).
> Increased risk of venous thromboembolism after ChAdOx1 nCoV-19 vaccination (1.10, 1.02 to 1.18 at 8–14 days) and after SARS-CoV-2 infection (13.86, 12.76 to 15.05 at 8–14 days).
> Increased risk of arterial thromboembolism after BNT162b2 mRNA vaccination (1.06, 1.01 to 1.10 at 15–21 days) and after SARS-CoV-2 infection (2.02, 1.82 to 2.24 at 15–21 days).
Secondary analyses found:
> Increased risk of CVST after ChAdOx1 nCoV-19 vaccination (4.01, 2.08 to 7.71 at 8–14 days), after BNT162b2 mRNA vaccination (3.58, 1.39 to 9.27 at 15–21 days), and after a positive SARS-CoV-2 test.
> Increased risk of ischaemic stroke after BNT162b2 mRNA vaccination (1.12, 1.04 to 1.20 at 15–21 days) and after a positive SARS-CoV-2 test.
> Increased risk of other rare arterial thrombotic events after ChAdOx1 nCoV-19 vaccination (1.21, 1.02 to 1.43 at 8–14 days) and after a positive SARS-CoV-2 test.
Increased risks of haematological and vascular events that led to hospital admission or death were observed for short time intervals after first doses of ChAdOx1 nCoV-19 and BNT162b2. The risks of these events were substantially higher and more prolonged after SARS-CoV-2 infection than after vaccination in the same population.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods: multinational study including 20 centers from nine different countries to assess epidemiology, risk factors, and outcome of CAPA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings: > A total of 592 patients were included in this study, including 11 (1.9%) patients with histologically proven CAPA, 80 (13.5%) patients with probable CAPA, 18 (3%) with possible CAPA and 483 (81.6%) without CAPA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> CAPA was diagnosed a median of 8 days (range 0-31) after ICU admission predominantly in older patients [adjusted hazard ratio (aHR) 1.04 per year] with any form of invasive respiratory support (HR 3.4) and receiving tocilizumab (HR 2.45).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Median prevalence of CAPA per center was 10.7% (range 1.7%-26.8%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> CAPA was associated with significantly lower 90-day ICU survival rate (29% in patients with CAPA versus 57% in patients without CAPA) and remained an independent negative prognostic variable after adjusting for other predictors of survival (HR=2.14).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPA was significantly more prevalent among older patients, patients receiving invasive ventilation and patients receiving tocilizumab, and was an independent strong predictor of ICU mortality.</td>
</tr>
<tr>
<td>NEJM 24AUG21</td>
<td>Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting</td>
<td>Barda N., et al. International gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>This study uses data from the largest health care organization in Israel to evaluate the safety of the BNT162b2 mRNA vaccine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods: > For each potential adverse event, in a population of persons with no previous diagnosis of that event, we individually matched vaccinated persons to unvaccinated persons according to sociodemographic and clinical variables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Risk ratios and risk differences at 42 days after vaccination were derived with the use of the Kaplan–Meier estimator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> To place these results in context, we performed a similar analysis involving SARS-CoV-2–infected persons matched to uninfected persons. The same adverse events were studied in the vaccination and SARS-CoV-2 infection analyses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results: > Vaccinated and control groups each included a mean of 884,828 persons.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Vaccination was most strongly associated with:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- an elevated risk of myocarditis (risk ratio, 3.24; 95% confidence interval [CI], 1.55 to 12.44; risk difference, 2.7 events per 100,000 persons; 95% CI, 1.0 to 4.6),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- lymphadenopathy (risk ratio, 2.43; 95% CI, 2.05 to 2.78; risk difference, 78.4 events per 100,000 persons; 95% CI, 64.1 to 89.3),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- appendicitis (risk ratio, 1.40; 95% CI, 1.02 to 2.01; risk difference, 5.0 events per 100,000 persons; 95% CI, 0.3 to 9.9),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- and herpes zoster infection (risk ratio, 1.43; 95% CI, 1.20 to 1.73; risk difference, 15.8 events per 100,000 persons; 95% CI, 8.2 to 24.2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> SARS-CoV-2 infection was associated with:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- a substantially increased risk of myocarditis (risk ratio, 18.28; 95% CI, 3.95 to 25.12; risk difference, 11.0 events per 100,000 persons; 95% CI, 5.6 to 15.8) and of additional serious adverse events, including pericarditis, arrhythmia, deep-vein thrombosis, pulmonary embolism, myocardial infarction, intracranial hemorrhage, and thrombocytopenia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusions In this study in a nationwide mass vaccination setting, the BNT162b2 vaccine was not associated with an elevated risk of most of the adverse events examined. The vaccine was associated with an excess risk of myocarditis (1 to 5 events per 100,000 persons). The risk of this potentially serious adverse event and of many other serious adverse events was substantially increased after SARS-CoV-2 infection.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **EbioMedicine** 01SEP21 | **Neutralisation titres against SARS-CoV-2 are sustained 6 months after onset of symptoms in individuals with mild COVID-19** | Underwood A.P., *et al.* Denmark [gotopaper](#) | Vaccines - Immunisation | **Methods**
> Plasma neutralisation titres in convalescent COVID-19 individuals determined at baseline and 6 months post-symptom onset using a cell culture infectious SARS-CoV-2 assay.
> Total SARS-CoV-2 spike-specific IgG and IgA binding measured by lectin capture ELISA and compared between timepoints and correlated to neutralising titres.

Findings
> All 48 convalescent COVID-19 individuals were found to have detectable SARS-CoV-2 50% inhibitory dilution neutralisation titres at baseline and 6 months post-symptom onset (mean ID50 of 1/943 and 1/411, respectively)
> SARS-CoV-2 neutralisation titres peaked within 1-2 months post-symptom onset, but 50% of individuals showed comparable ID50 at baseline and 6 months post-symptom onset.
> Both SARS-CoV-2 spike-specific IgG and IgA levels correlated well with neutralising titres
> IgG binding was found to be sustained up to 6 months post-symptom onset, whereas IgA levels declined.

Conclusion
This study demonstrates durability of SARS-CoV-2 spike-specific IgG and neutralisation responses following recovery from mild COVID-19 (6 months post-symptom onset). It also demonstrated a relationship between spike-specific IgA and neutralisation decline, with implications for long-term protection against SARS-CoV-2 infection. |
| **Clin Infect Dis** 24AUG2021 | **Deconstructing the Treatment Effect of Remdesivir in the Adaptive COVID-19 Treatment Trial-1: Implications for Critical Care Resource Utilization** | Fintzi J., *et al.* USA [gotopaper](#) | Therapeutics | **Methods**
> We analyzed trajectories of daily ordinal severity scores reflecting oxygen requirements of 1051 patients hospitalized with COVID-19 who participated in ACTT-1.
> We developed competing risks models that estimate the effect of remdesivir therapy on cumulative incidence of clinical improvement and deterioration, and multistate models that utilize the entirety of each patient’s clinical course to characterize the effect of remdesivir on progression along the 4 pathways above.

Findings
> Based on a competing risks analysis, remdesivir reduced clinical deterioration (hazard ratio, 0.73; 95% CI, 0.59-0.91) and increased clinical improvement (hazard ratio, 1.22; 95% CI, 1.08, 1.39) relative to baseline.
> Our multistate models indicate that remdesivir inhibits worsening to ordinal scores of greater clinical severity among patients on room air or low-flow oxygen (hazard ratio, 0.74; 95% CI, 0.57-0.94) and among patients receiving mechanical ventilation or high-flow oxygen/noninvasive positive-pressure ventilation (hazard ratio, 0.73; 95% CI, 0.53-1.00) at baseline.
> We also find that remdesivir reduces expected intensive care respiratory therapy utilization among patients not mechanically ventilated at baseline.

Remdesivir speeds time to recovery by preventing worsening to clinical states that would extend the course of hospitalization and increase intensive respiratory support, thereby reducing the overall demand for hospital care. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature 24AUG2021</td>
<td>Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York</td>
<td>Annavajhala M. K., et al. USA gotopaper</td>
<td>Public Health / Epidemiology - Variants</td>
<td>> Two signature mutations of concern are E484K, which plays a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of variant lineage B.1.526 that contains E484K and its alarming rise to dominance in New York City in early 2021. Methods > This variant is partially or completely resistant to two therapeutic monoclonal antibodies in clinical use and less susceptible to neutralization by convalescent plasma or vaccinee sera, posing a modest antigenic challenge. > The B.1.526 lineage has now been reported from all 50 states in the United States and numerous other countries. B.1.526 rapidly replaced earlier lineages in New York upon its emergence, with an estimated transmission advantage of 35%. > Such transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, probably contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrent with the rise of B.1.1.7 and ensuing variants.</td>
</tr>
<tr>
<td>Clin Microbiol Infect 23AUG2021</td>
<td>Immunogenicity and safety of the BNT162b2 mRNA Covid-19 vaccine in people living with HIV-1</td>
<td>Levy I., et al. Israel gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim : to assess the immunogenicity and safety the Pfizer-BionTech BNT162b2 mRNA vaccine in people living with HIV-1 (PLWH) . Methods: Prospective open study enrolling 143 PLWH, aged ≥18 years, and 261 immunocompetent health care workers (HCWs). SARS-CoV-2 receptor binding domain (RBD) IgG and neutralizing antibodies were measured. Adverse events, viral load and CD4 cell counts were monitored Findings: > At a median of 18 days (IQR 14-21) after the second dose, anti-RBD IgG was positive in 139/141 (98%) PLWH. > Among HCWs, 258/261 (98.9%) developed anti-RBD IgG at a median of 26 (IQR 24-27) days after the second dose. > Following the second dose, immune sera neutralized SARS-CoV-2 pseudo-virus in 97% and 98% of PLWH and HCW, respectively. > Adverse events were reported in 60% of PLWH, mainly pain at the injection site, fatigue, and headache. AIDS-related adverse events were not reported. > HIV viral load increased in 3/143 (2%) patients from < 40 copies/mL to ≤ 100 copies/mL. CD4+ T cell count decreased from a geometric mean of 700 cells per μL to 633.8 cells per μL (P<0.01). BNT162b2 mRNA vaccine appears immunogenic and safe in PLWH who are on ART with unsuppressed CD4 count and suppressed viral load.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>BMJ 20AUG2021</td>
<td>Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of covid-19 in Brazil: test negative case-control study</td>
<td>Ranzani O.T., et al. Brazil [gotopaper]</td>
<td>Vaccines-Immunisation</td>
<td>Methods > Case-control study in a community testing setting for in São Paulo > 43 774 adults aged ≥70 years; 26 433 cases with symptomatic covid-19 and 17 622 test negative controls with covid-19 symptoms (13 283 matched sets). > Intervention Vaccination with a two-dose regimen of CoronaVac.
Main outcome measures RT-PCR confirmed symptomatic covid-19 and associated hospital admissions and deaths. Findings > Adjusted vaccine effectiveness against symptomatic covid-19 was 24.7% (95% confidence interval 14.7% to 33.4%) at 0–13 days and 46.8% (38.7% to 53.8%) at ≥14 days after the second dose. > Adjusted vaccine effectiveness against hospital admissions was 55.5% (46.5% to 62.9%) and against deaths was 61.2% (48.9% to 70.5%) at ≥14 days after the second dose. > Vaccine effectiveness ≥14 days after the second dose was highest for the youngest age group (70–74 years)—59.0% (43.7% to 70.2%) against symptomatic disease, 77.6% (62.5% to 86.7%) against hospital admissions, and 83.9% (59.2% to 93.7%) against deaths—and declined with increasing age. Conclusions Vaccination with CoronaVac is associated with a reduction in symptomatic covid-19, hospital admissions, and deaths in adults aged ≥70 years in a setting with extensive transmission of the gamma variant. Vaccine protection was, however, low until completion of the two dose regimen, and vaccine effectiveness was observe to decline with increasing age among this elderly population.</td>
</tr>
<tr>
<td>Clin Infect Dis. 19AUG2021</td>
<td>Post-vaccination COVID-19: A case-control study and genomic analysis of 119 breakthrough infections in partially vaccinated individuals</td>
<td>Baltas I., et al. UK [gotopaper]</td>
<td>Vaccines-Immunisation</td>
<td>Methods > case control study: 119 cases of post-vaccination SARS-CoV-2 infection with BNT162b2 mRNA, or ChAdOx1 nCoV-19 matched to 476 unvaccinated patients with COVID-19 (Sept 2020–March 2021), according to age and sex. > Evaluataion of the differences in 60-day all-cause mortality, hospital admission, and hospital length of stay > Phylogenetic, single nucleotide polymorphism (SNP) and minority variant allele (MVA) full genome sequencing analysis performed.
Findings > 116/119 cases developed COVID-19 post first vaccination dose (median 14 days, IQR 9–24 days). > Overall, 13/119 (10.9%) cases and 158/476 (33.2%) controls died (p=0.001), corresponding to 4.5 number needed to treat (NNT). > Multivariably, vaccination was associated with 69.3% (95%CI 45.8–82.6) relative risk (RR) reduction in mortality. > Similar results were seen in subgroup analysis for patients with infection onset ≥14 days after first vaccination (RR reduction 65.1%, 95%CI 27.2–83.2, NNT 4.5), and across vaccine subgroups (BNT162b2: RR reduction 66%, 95%CI 34.9–82.2, NNT 4.7, ChAdOx1: RR reduction 78.4%, 95%CI 30.4–93.3, NNT 4.1). Hospital admissions (OR 0.80, 95%CI 0.51–1.28), and length of stay (1.89 days, 95%CI 4.57–0.78) were lower for cases, while Ct values were higher (30.8 versus 28.8, p = 0.053). > B.1.1.7 was the predominant lineage in cases (100/108, 92.6%) and controls (341/446, 76.5%). > Genomic analysis identified one post-vaccination case harboring the E484K vaccine escape mutation (B.1.525 lineage). Conclusions Previous vaccination reduces mortality when B.1.1.7 is the predominant lineage.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Cell 19AUG2021 | A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation | Kang L., et al. USA [gotopaper](#) | Virology Variants | > Over 182,000 SARS-CoV-2 genomes were screened for selective sweep signatures
> An adaptive change within the spike protein receptor-binding domain was identified
> This change was predicted and experimentally confirmed to increase affinity to hACE2
> As a result, viral replication is enhanced relative to the putative ancestral variant
Our findings suggest that this mutation likely contributed to SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-human transmission |
| Clin Infect Dis. 19AUG2021 | Remdesivir and Mortality in Patients with COVID-19 | Diaz G., et al. USA [gotopaper](#) | Therapeutics | The purpose of this study was to assess the association of RDV with mortality in patients with COVID-19.
Methods
> In this retrospective cohort study we compared persons receiving RDV to persons receiving best supportive care (BSC)
> Patients hospitalized between 2/28/20 – 5/28/20 with laboratory confirmed SARS-CoV-2 infection were included when they developed COVID-19 pneumonia on chest radiography, and hypoxia requiring supplemental oxygen or SpO2 ≤ 94% on room air.
> The primary outcome was overall survival assessed with time-dependent Cox proportional-hazards regression and multivariable adjustment, including calendar time, baseline patient characteristics, corticosteroid use and effects for hospital.
Findings
> 1,138 patients were enrolled including 286 who received RDV, and 852 treated with BSC, 400 of whom received hydroxychloroquine. Corticosteroids were used in 20.4% of the cohort (12.6% in RDV and 23% in BSC).
> In persons receiving RDV compared to those receiving BSC the HR (95%CI) for death was 0.46 (0.31 – 0.69) in the univariate model, p<0.001 and 0.60 (0.40 – 0.90) in the risk-adjusted model, p=0.014. In the sub-group of persons with baseline use of low-flow oxygen, the HR (95%CI) for death in RDV compared to BSC was 0.63 (0.39 – 1.00), p=0.049.
Treatment with RDV was associated with lower mortality compared to BSC. These findings remain the same in the subgroup with baseline use of low-flow oxygen. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science Immunol. | Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths | Bastard P., et al. International gotopaper | Immunology | Aim: to assess the levels of auto-Abs neutralizing concentrations of type I IFNs in patients with critical and severe Covid-19 per decade of life and by sex.

Findings:
> The authors detected Auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19.
> These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days - 99 years; mean: 70 years).
> In a sample of 34,159 uninfected subjects from the general population, the authors showed that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years.
> The proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years.

Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases. |
| Blood Advances | Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with B-cell non-Hodgkin lymphoma | Perry C., et al. Israel gotopaper | Vaccines - Immunisation | Aim: to investigate the humoral response to SARS-CoV-2 vaccine in patients with B-NHL and looked at factors affecting the response rate to the vaccine

Methods:
The humoral immune response to BNT162b2 messenger RNA (mRNA) COVID-19 vaccine was evaluated in patients with B-NHL who received 2 vaccine doses 21 days apart and compared with the response in healthy controls. Antibody titer, measured by the Elecsys Anti-SARS-CoV-2S assay, was evaluated 2 to 3 weeks after the second vaccine dose.

Findings:
> Patients with B-NHL (n = 149), aggressive B-NHL (a-B-NHL; 47%), or indolent B-NHL (i-B-NHL; 53%) were evaluated. Twenty-eight (19%) were treatment naive, 37% were actively treated with a rituximab/obinutuzumab (R/Obi)-based induction regimen or R/Obi maintenance, and 44% had last been treated with R/Obi >6 months before vaccination.
> A seropositive response was achieved in 89%, 7.3%, and 66.7%, respectively, with response rates of 49% in patients with B-NHL vs 98.5% in 65 healthy controls. Multivariate analysis revealed that longer time since exposure to R/Obi and absolute lymphocyte count ≥0.9 x 103/μL predicted a positive serological response.
> Median time to achieve positive serology among anti-CD20 antibody-treated patients was longer in i-B-NHL vs a-B-NHL.
> The humoral response to BNT162b2 mRNA COVID-19 vaccine is impaired in patients with B-NHL who are undergoing R/Obi treatment.

Patients with B-NHL treated with an anti-CD20 antibody are unlikely to achieve humoral response to BNT162b2 mRNA COVID-19 vaccine. Longer time since exposure to R/Obi is associated with improved response rates to the COVID-19 vaccine. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> All patients were either 50 years of age or older or had one or more risk factors for disease progression.
> All patients presented to the emergency department within 7 days after symptom onset and were in stable condition for outpatient management.
Primary outcome: disease progression within 15 days after randomization – a composite of hospital admission for any reason, or death without hospitalization.
Secondary outcomes: worst severity of illness on an 8-category ordinal scale, hospital-free days within 30 days after randomization, and death from any cause.
Results
> 511 patients enrolled (257 in the convalescent-plasma group and 254 in the placebo group). Median age was 54 years; median symptom duration was 4 days.
> In the donor plasma samples, the median titer of SARS-CoV-2 neutralizing antibodies was 1:641.
> Disease progression occurred in 77 patients (30.0%) in the convalescent-plasma group and in 81 patients (31.9%) in the placebo group (risk difference, 1.9 percentage points; 95% credible interval, −6.0 to 9.8; posterior probability of superiority of convalescent plasma, 0.68).
> Five patients in the plasma group and 1 patient in the placebo group died.
> Outcomes regarding worst illness severity and hospital-free days were similar in the two groups.
Administration of Covid-19 convalescent plasma to high-risk outpatients within 1 week after the onset of symptoms of Covid-19 did not prevent disease progression. |
| NEJM 18AUG2021 | Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors | Tan C.W., et al. Singapore [gotopaper](#) | Vaccines - Immunisation | > Potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of SARS-CoV-1 infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine.
> The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection.
> These findings show the feasibility of a pan-sarbecovirus vaccine strategy. |
| Science 17AUG2021 | Vaccine nationalism and the dynamics and control of SARS-CoV-2 | Wagner C.E., et al. Canada / USA [gotopaper](#) | Vaccines | Background: Vaccines provide powerful tools to mitigate the public health and economic costs of SARS-CoV-2 pandemic globally, yet vaccine distribution remains unequal among countries.
Aim: to examine the potential epidemiological and evolutionary impacts of ‘vaccine nationalism’ by extending previous models to include simple scenarios of stockpiling between two regions.
> In general, when vaccines are widely available and the immunity they confer is robust, sharing doses minimizes total cases across regions.
> A number of subtleties arise when the populations and transmission rates in each region differ, depending on evolutionary assumptions and vaccine availability.
> When the waning of natural immunity contributes most to evolutionary potential, sustained transmission in low access regions results in an increased potential for antigenic evolution, which may result in the emergence of novel variants that affect epidemiological characteristics globally.
Overall, our results stress the importance of rapid equitable vaccine distribution for global control of the pandemic. |
Bell’s palsy following vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and nested case-control study

Authors: Wan E.Y.F., et al.
Link: China [gotopaper](#)

Aim: to evaluate the risk of Bell’s palsy after BNT162b2 and CoronaVac vaccination.

Methods:
Case series and nested case-control study done in Hong Kong, the risk of Bell’s palsy within 42 days following vaccination with BNT162b2 (Fosun–BioNTech [equivalent to Pfizer–BioNTech]) or CoronaVac (from Sinovac Biotech, Hong Kong) was assessed using data from voluntary surveillance reporting.

Results:
- 51,939 individuals received the first dose of CoronaVac and 537,205 individuals received the first dose of BNT162b2. 28 clinically confirmed cases of Bell’s palsy were reported following CoronaVac and 16 cases were reported following BNT162b2.
- The age-standardised incidence of clinically confirmed Bell’s palsy was 66·9 cases per 100,000 person-years (95% CI 37·2 to 96·6) following CoronaVac vaccination and 42·8 per 100,000 person-years (19·4 to 66·1) for BNT162b2 vaccination.
- The age-standardised difference for the incidence compared with the background population was 41·5 (95% CI 11·7 to 71·4) for CoronaVac and 17·0 (−6·6 to 40·6) for BNT162b2, equivalent to an additional 4·8 cases per 100,000 people vaccinated for CoronaVac and 2·0 cases per 100,000 people vaccinated for BNT162b2.
- In the nested case-control analysis, 298 cases were matched to 1181 controls, and the adjusted ORs were 2·385 (95% CI 1·415 to 4·022) for CoronaVac and 1·755 (0·886 to 3·477) for BNT162b2.

Twelve-month systemic consequences of COVID-19 in patients discharged from hospital: a prospective cohort study in Wuhan, China

Authors: Liu T., et al.
Link: China [gotopaper](#)

Aim: to investigate longitudinal changes in the characteristics of COVID-19 survivors after discharge.

Methods:
A total of 594 COVID-19 survivors discharged from Tongji Hospital in Wuhan from February 10 to April 30, 2020 were included and followed up until May 17, 2021. Laboratory and radiological findings, pulmonary function tests, electrocardiogram, symptoms and signs were analyzed.

Results:
- 257 (51.2%) patients had at least one symptom at 3 months post-discharge, which decreased to 169 (40.0%) and 138 (28.4%) at 6-month and 12-month visit respectively.
- During follow-up period, insomnia, chest tightness, and fatigue were the most prevalent symptoms. Most laboratory parameters returned to normal, whereas increased incidence of abnormal liver and renal function and cardiovascular injury was evidenced after discharge.
- Fibrous stripes (213; 42.4%), pleural thickening and adhesions (188; 37.5%) and enlarged lymph nodes (120; 23.9%) were the most common radiographical findings at 3 months post-discharge.
- The abnormalities of pulmonary function included obstructive, restrictive, and mixed, which were 5.5%, 4.0%, 0.9% at 6 months post, and 1.9%, 4.7%, 0.2% at 12 months.
- Electrocardiogram abnormalities occurred in 256 (51.0%) patients at 3 months post-discharge, including arrhythmia, ST-T change and conduction block, which increased to 258 (61.1%) cases at 6-month visit and were maintained at high frequency (242;49.8%) at 12-month visit.
- Physiological, laboratory, radiological or electrocardiogram abnormalities, particularly those related to renal, cardiovascular, liver functions are common in patients who recovered from COVID-19 up to 12 months post-discharge.
Journal and date
JAMA 13AUG2021

Title
Change in Saliva RT-PCR Sensitivity Over the Course of SARS-CoV-2 Infection

Authors and link
Congrave-Wilson Z., et al.
USA [gotopaper](#)

Field of expertise
Diagnostics

Key facts
A prospective, longitudinal study to investigate the testing timeframe that optimizes saliva sensitivity for SARS-CoV-2 detection

Method
> Between June 17, 2020, and February 15, 2021, a convenience sample of individuals exposed to a household member with RT-PCR-confirmed SARS-CoV-2 within 2 weeks
> Paired nasopharyngeal and saliva samples were collected every 3 to 7 days for up to 4 weeks or until 2 negative nasopharyngeal test results.

Findings
> We tested 889 paired nasopharyngeal swab-saliva samples from 404 participants, of which SARS-CoV-2 was detected in 524 nasopharyngeal (58.9%) and 318 saliva (35.7%) specimens. SARS-CoV-2 was detected in both specimens in 258 pairs (29.0%)
> 93 participants (36.3%) were asymptomatic throughout their infection; 126 (77.3%) of 163 symptomatic individuals reported mild severity.
> Saliva sensitivity was highest in samples collected during the first week of infection at 71.2% (95% CI, 62.6%-78.8%) but decreased each subsequent week.
> Participants who presented with COVID-19-associated symptoms on the specimen collection day during week 1 of infection had significantly higher saliva sensitivity compared with asymptomatic participants (88.2% [95% CI, 77.6%-95.1%] vs 58.2% [95% CI, 46.3%-69.5%]; P < .001). Saliva sensitivity remained significantly higher in symptomatic participants in week 2 (83.0% [95% CI, 70.6%-91.8%] vs 52.6% [95% CI, 42.6%-62.5%]; P < .001).
> No difference was observed more than 2 weeks after COVID-19 onset.
> Sensitivities did not significantly differ for never-symptomatic (34.7% [95% CI, 27.3%-42.7%]), presymptomatic (57.1% [95% CI, 31.7%-80.2%]), and postsymptomatic (42.9% [95% CI, 36.8%-49.1%]) time points (P = .26).

Saliva was sensitive for detecting SARS-CoV-2 in symptomatic individuals during initial weeks of infection, but sensitivity in asymptomatic SARS-CoV-2 carriers was less than 60% at all time points. This study suggests saliva-based RT-PCR should not be used for asymptomatic COVID-19 screening.

Journal and date
Science 12AUG2021

Title
Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants

Authors and link
Pegu A., et al.
USA [gotopaper](#)

Field of expertise
Vaccines - Immunisation

Key facts
Aim: to assess the impact of SARS-CoV-2 variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) on binding, neutralizing, and ACE2-competing antibodies elicited by the vaccine mRNA-1273 over seven months.

Methods:
Three functional assays and two binding assays were used to assess the humoral immune response to the SARS-CoV-2 spike protein. SARS-CoV-2 neutralization was measured using both a lentivirus-based pseudovirus assay, and a live-virus focus reduction neutralization test (FRNT). The third functional assay was a MSD-ECLIA-based ACE2 competition assay.

Results
> Cross-reactive neutralizing responses were rare after a single dose.
> At the peak of response to the second vaccine dose, all individuals had responses to all variants.
> Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6-months after the primary series of the mRNA-1273 vaccine.
> Many subjects in the oldest group retained neutralizing activity against the variants 6-months after the second vaccine dose.
> Across all assays, B.1.351 had the lowest antibody recognition.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
- Ongoing phase 2–3, placebo-controlled trial, healthy adolescents (12-17 years) randomized in a 2:1 ratio to receive two injections of the mRNA-1273 vaccine (100 μg in each) or placebo, 28 days apart.
Primary objectives: safety of mRNA-1273 in adolescents, noninferiority of the immune response in adolescents as compared with that in young adults (18-25 years) in a phase 3 trial.
Secondary objectives: efficacy of mRNA-1273 in preventing Covid-19 or asymptomatic SARS-CoV-2 infection.
Results
> 3732 participants in total: 2489 in mRNA-1273 group, 1243 in placebo group.
> In the mRNA-1273 group, the most common solicited adverse reactions after the first or second injections were injection-site pain (in 93.1% and 92.4%, respectively), headache (in 44.6% and 70.2%, respectively), and fatigue (in 47.9% and 67.8%, respectively); in the placebo group, the most common solicited adverse reactions after the first or second injections were injection-site pain (in 34.8% or 30.3%, respectively), headache (in 38.5% and 30.2%, respectively), and fatigue (in 36.6% and 28.9%, respectively). No serious adverse events related to mRNA-1273 or placebo were noted.
> The geometric mean titer ratio of pseudovirus neutralizing antibody titers in adolescents relative to young adults was 1.08 (95% CI, 0.94 to 1.24), and the absolute difference in serologic response was 0.2 percentage points (95% CI, −1.8 to 2.4), which met the noninferiority criterion.
> No cases of Covid-19 with an onset of 14 days after the second injection were reported in the mRNA-1273 group, and four cases occurred in the placebo group.
The mRNA-1273 vaccine had an acceptable safety profile in adolescents. The immune response was similar to that in young adults, and the vaccine was efficacious in preventing Covid-19.
- 120 transplant recipients who had received two doses of mRNA-1273, received either a third dose of mRNA-1273 vaccine or saline placebo 2 months after the second dose of mRNA-1273 (dosing schedule: 0, 1, and 3 months).
Primary outcome: serologic response characterized by an anti-RBD antibody level of at least 100 U per milliliter at month 4.
Secondary outcomes: % neutralization, polyfunctional T-cell response
Results
> Median age of patients was 66.6 years (IR 63.3–71.4), and the median time from transplantation to the third dose was 3.16 years (IR 1.71–6.12).
> At month 4, an anti-RBD antibody level of at least 100 U per milliliter was present in 33/60 patients (55%) in the mRNA-1273 group and in 10/57 patients (18%) in the placebo group (relative risk, 3.1; 95% CI, 1.7–5.8; P<0.001).
> After the third dose, the median percent virus neutralization was 71% in the mRNA-1273 group and 13% in the placebo group (95% CI for the between-group difference, 11-76 percentage points), and patients above the 30% threshold for neutralizing antibody positivity was 60% and 25%, respectively (relative risk, 2.4; 95% CI, 1.5-4.0).
> Median SARS-CoV-2–specific T-cell counts were greater after the third dose in the mRNA-1273 group than in the placebo group (432 vs. 67 cells per 106 CD4+ T cells; 95% CI for the between-group difference, 46 to 986). There was a minimal polyfunctional CD8+ T-cell response in both groups.
> Local and systemic secondary events were slightly more common after the third dose of mRNA-1273 than after the dose of placebo, but no grade 3 or 4 events and no cases of acute rejection occurred.
A third dose of mRNA vaccine in transplant recipients had substantially higher immunogenicity than placebo. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis
NEJM 11AUG2021</td>
<td>Pavord S., et al. UK gotopaper</td>
<td>Vaccines</td>
<td>Aim: to provide data on the clinical features of and the prognostic criteria for Vaccine-induced immune thrombocytopenia and thrombosis (VITT).

Results
› Among 294 patients with suspected VITT, we identified 170 definite and 50 probable cases of VITT.
› All the patients had received the first dose of ChAdOx1 nCoV-19 vaccine and presented 5 to 48 days (median, 14) after vaccination. The age range was 18 to 79 years (median, 48), with no sex preponderance and no identifiable medical risk factors.
› Overall mortality was 22%. The odds of death increased by a factor of 2.7 (95% CI, 1.4 to 5.2) among patients with cerebral venous sinus thrombosis, by a factor of 1.7 (95% CI, 1.3 to 2.3) for every 50% decrease in the baseline platelet count, by a factor of 1.2 (95% CI, 1.0 to 1.3) for every increase of 10,000 fibrinogen-equivalent units in the baseline d-dimer level, and by a factor of 1.7 (95% CI, 1.1 to 2.5) for every 50% decrease in the baseline fibrinogen level.
› Multivariate analysis identified the baseline platelet count and the presence of intracranial hemorrhage as being independently associated with death; the observed mortality was 73% among patients with platelet counts below 30,000 per cubic millimeter and intracranial hemorrhage.

The high mortality associated with VITT was highest among patients with a low platelet count and intracranial hemorrhage.</td>
<td></td>
</tr>
<tr>
<td>Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial
Lancet 10AUG2021</td>
<td>Yu L.M., et al. UK gotopaper</td>
<td>Therapeutics</td>
<td>Aim: to establish whether inhaled budesonide reduces time to recovery and COVID-19-related hospital admissions or deaths among people at high risk of complications in the community.

Participants: ≥65 years old or ≥50 years old with comorbidities, and unwell for up to 14 days with suspected COVID-19 but not admitted to hospital.
Treatments: usual care, usual care plus inhaled budesonide (800 μg twice daily for 14 days), or usual care plus other interventions.
Coprimary endpoints: time to first self-reported recovery and hospital admission or death related to COVID-19, within 28 days.

Results
› Randomisation to budesonide from Nov 27, 2020, to March 31, 2021, when the prespecified time to recovery superiority criterion was met. Primary analysis model includes 2530 SARS-CoV-2-positive participants, with 787 in the budesonide group, 1069 in the usual care group, and 974 receiving other treatments.
› There was a benefit in time to first self-reported recovery of an estimated 2.94 days (95% Bayesian credible interval [BCI] 1.99 to 5.12) in the budesonide group versus the usual care group (11.8 days [95% BCI 10.0 to 14.1] vs 14.7 days [12.3 to 18.0]; hazard ratio 1.21 [95% BCI 1.08 to 1.36]), with a probability of superiority greater than 0.999, meeting the prespecified superiority threshold of 0.99.
› For the hospital admission or death outcome, the estimated rate was 6.8% (95% BCI 4.1 to 10.2) in the budesonide group versus 8.8% (5.5 to 12.7) in the usual care group (estimated absolute difference 2.0% [95% BCI 0.2 to 4.5]; odds ratio 0.75 [95% BCI 0.55 to 1.03]), with a probability of superiority 0.963, below the prespecified superiority threshold of 0.975.
› Two participants in the budesonide group and four in the usual care group had serious adverse events (hospital admissions unrelated to COVID-19).

Inhaled budesonide improves time to recovery, with a chance of also reducing hospital admissions or deaths, in people with COVID-19 in the community who are at higher risk of complications.</td>
<td></td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Science Transl Med. 10AUG2021 | Two doses of the SARS-CoV-2 BNT162b2 vaccine enhances antibody responses to variants in individuals with prior SARS-CoV-2 infection | Urbanowicz R.A., et al. UK gotopaper | Vaccines - Immunisation | **Aim:** to understand how prior infection plus vaccination can modulate immune responses against variants of concern.
>20 individuals with and 25 individuals without confirmed previous SARS-CoV-2 infection from a large cohort of healthcare workers were sampled. All 45 individuals had received two doses of the Pfizer-BioNTech BNT162b2 vaccine with a delayed booster at 10 weeks.
> Absolute and neutralizing antibody titers against wild-type SARS-CoV-2 and variants were measured using enzyme immunoassays and pseudotype neutralization assays. Antibody reactivity against lineage A, B.1.351 and P.1 variants was observed with increasing antigenic exposure, either through vaccination or natural infection.
> This improvement was further confirmed in neutralization assays using fixed dilutions of serum samples.
> The impact of antigenic exposure was more evident in enzyme immunoassays measuring SARS-CoV-2 spike protein-specific IgG antibody concentrations.
> Multiple exposures to SARS-CoV-2 spike protein in the context of a delayed booster expand the neutralizing breadth of the antibody response to neutralization-resistant SARS-CoV-2 variants. This suggests that additional vaccine boosts may be beneficial in improving immune responses against future SARS-CoV-2 variants. |
| Clin Infect Dis. 10AUG2021 | SARS-CoV-2 Viremia is Associated with COVID-19 Severity and Predicts Clinical Outcomes | Jacobs J.L., et al. USA gotopaper | Clinic | **Aim:** to understand whether SARS-CoV-2 RNAemia reflects viremia (i.e., virus particles) and how RNAemia/viremia is related to host immune responses and outcomes.
Study group: observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-ICU), and 23 ICU patients.
Results
> SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6% and 11.1% of ICU, non-ICU, and outpatients respectively.
> Virions were detected in plasma pellets by electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (p<0.0001); and for inpatient, plasma vRNA levels were strongly associated with higher WHO score at admission (p=0.01), maximum WHO score (p=0.002) and discharge disposition (p=0.004).
> A plasma vRNA level >6,000 copies/ml was strongly associated with mortality (HR: 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (p<0.01) but not with plasma neutralizing antibody titers (p=0.8).
SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia correlate strongly with disease severity, patient outcome and specific inflammatory biomarkers but not neutralizing antibody titers. |
Key facts

Nature Commun. 09AUG2021

The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients

Perreau M., et al. Switzerland / France [gotopaper]

Clinic

Aim: to identify biological signatures of severe COVID-19 predictive of admission in ICU.

- Over 170 immunological markers were investigated in a 'discovery' cohort (n = 98 patients).
- 13 out of 49 cytokines were significantly associated with ICU admission in the three cohorts (P < 0.05 to P < 0.001), while cellular immunological markers lacked power in discriminating between ICU and non-ICU patients.
- The cytokine results were confirmed in two 'validation' cohorts, i.e. the French COVID-19 Study (FCS; n = 62) and a second LUH-2 cohort (n = 67).
- The combination of hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 13 (CXCL13) was the best predictor of ICU admission (positive and negative predictive values ranging from 81.8% to 93.1% and 85.2% to 94.4% in the 3 cohorts) and occurrence of death during patient follow-up (8.8 fold higher likelihood of death when both cytokines were increased).
- HGF is a pleiotropic cytokine with anti-inflammatory properties playing a fundamental role in lung tissue repair, and CXCL13, a pro-inflammatory chemokine associated with pulmonary fibrosis and regulating the maturation of B cell response. Up-regulation of HGF reflects a powerful counter-regulatory mechanism to antagonize pro-inflammatory cytokines including CXCL13 and to prevent lung fibrosis in COVID-19 patients.

Lancet 06AUG2021

Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial

Liu X., et al. UK [gotopaper]

Vaccines - Immunisation

Aim: to report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines.

- Most eligible, ≥50 year old participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals.
- 100 eligible participants enrolled into an immunology cohort, randomly assigned (1:1:1:1) to the four schedules (28-day interval only).

Primary endpoint: geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT.

Non-inferiority of heterologous schedules to homologous schedules if lower limit of the one-sided 97.5% CI of the GMR of these comparisons is >0.63.

Results

- 830 participants were enrolled (Feb 11–26, 2021), including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57.8 years (SD 4.7), with 212 (46%) female participants and 117 (25%) from ethnic minorities.
- At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9.2 (one-sided 97.5% CI 7.5 to ∞).
- In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0.51 (one-sided 97.5% CI 0.43 to ∞).
- Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation.

Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd). Along with the higher immunogenicity of ChAd/BNT compared with ChAd/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet 06AUG2021 | Cerebral venous thrombosis after vaccination against COVID-19 in the UK: a multicentre cohort study | Perry R.J., et al. UK gotopaper | Vaccines | **Aim:** to document the features of post-vaccination cerebral venous thrombosis with and without vaccine-induced immune thrombotic thrombocytopenia (VITT) and to assess whether VITT is associated with poorer outcomes.
Results
> Between April 1 and May 20, 2021, 95 patients were included in analysis, 70 had VITT and 25 did not. The median age of the VITT group (47 years, IQR 32–55) was lower than in the non-VITT group (57 years; 41–62; p=0.0045).
> Patients with VITT-associated cerebral venous thrombosis had more intracranial veins thrombosed (median 3, IQR 2–4) than non-VITT patients (2, 2–3; p=0.041) and more frequently had extracranial thrombosis (31 [44%] of 70 patients) compared with non-VITT patients (one [4%] of 25 patients; p=0.0003).
> The primary outcome of death or dependency occurred more frequently in patients with VITT-associated cerebral venous thrombosis (33 [47%] of 70 patients) compared with the non-VITT control group (four [16%] of 25 patients; p=0.0061).
> This adverse outcome was less frequent in patients with VITT who received non-heparin anticoagulants (18 [36%] of 50 patients) compared with those who did not (15 [75%] of 20 patients; p=0.0031), and in those who received intravenous immunoglobulin (22 [40%] of 55 patients) compared with those who did not (11 [73%] of 15 patients; p=0.022).

Cerebral venous thrombosis is more severe in the context of VITT. Non-heparin anticoagulants and immunoglobulin treatment might improve outcomes of VITT-associated cerebral venous thrombosis. |
Main outcome: in-hospital mortality due to COVID-19.
Results
> Among the 219 265 individuals admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and known in-hospital outcome data, 51 037 (23.3%) died.
> Most commonly observed comorbidities among individuals with available data were hypertension in 61 098 (37.4%) of 163 350, diabetes in 43 885 (27.4%) of 159 932, and HIV in 13 793 (9.1%) of 151 779. Tuberculosis was reported in 5282 (3.6%) of 146 381 individuals.
> Increasing age was the strongest predictor of COVID-19 in-hospital mortality. Other factors associated were HIV infection (adjusted odds ratio 1·34, 95% CI 1·27–1·43), past tuberculosis (1·26, 1·15–1·38), current tuberculosis (1·42, 1·22–1·64), and both past and current tuberculosis (1·48, 1·32–1·67) compared with never tuberculosis, as well as other described risk factors for COVID-19, such as male sex; non-White race; underlying hypertension, diabetes, chronic cardiac disease, chronic renal disease, and malignancy in the past 5 years; and treatment in the public health sector.
> After adjusting for other factors, people with HIV not on antiretroviral therapy (ART; adjusted odds ratio 1·45, 95% CI 1·22–1·72) were more likely to die in hospital than were people with HIV on ART.
> Among people with HIV, the prevalence of other comorbidities was 29·2% compared with 30·8% among HIV-uninfected individuals. Increasing number of comorbidities was associated with increased COVID-19 in-hospital mortality risk in both people with HIV and HIV-uninfected individuals.

Individuals identified as being at high risk of COVID-19 in-hospital mortality (older individuals and those with chronic comorbidities and people with HIV, particularly those not on ART) would benefit from COVID-19 prevention programmes. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 04AUG2021 | Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19 | ATTACC, ACTIV-4a, REMAP-CAP Investigators International gotopaper | Therapeutics | **Aim:** to test if therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19.
Treatment: therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis.
The primary outcome: organ support–free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of −1) and the number of days free of cardiovascular or respiratory organ support up to day 21. This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d-dimer level.
Results
> The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met.
> Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support–free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58).
> The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95%CI, 0.5 to 7.2).
> The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d-dimer cohort, 92.9% in the low d-dimer cohort, and 97.3% in the unknown d-dimer cohort.
> Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis.
Conclusions
In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis. |
| NEJM 04AUG2021 | Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19 | REMAP-CAP, ACTIV-4a, ATTACC Investigators International gotopaper | Therapeutics | **Aim:** to test if therapeutic-dose anticoagulation would improve outcomes in critically ill patients with Covid-19.
Treatment: therapeutic-dose anticoagulation with heparin or pharmacologic thromboprophylaxis.
Primary outcome: organ support–free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of −1) and the number of days free of cardiovascular or respiratory organ support up to day 21.
Results
> The trial was stopped when the prespecified criterion for futility was met for therapeutic-dose anticoagulation.
> Data on the primary outcome were available for 1098 patients (534 on therapeutic-dose anticoagulation and 564 on usual-care thromboprophylaxis).
> The median value for organ support–free days was 1 (interquartile range [IR], −1 to 16) among the patients assigned to therapeutic-dose anticoagulation and was 4 (IR, −1 to 16) among the patients assigned to usual-care thromboprophylaxis (adjusted proportional odds ratio, 0.83; 95%CI, 0.67 to 1.03; posterior probability of futility [odds ratio <1.2], 99.9%).
> The percentage of patients who survived to hospital discharge was similar in the two groups (62.7% and 64.5%, respectively; adjusted odds ratio, 0.84; 95%CI, 0.64 to 1.11).
> Major bleeding occurred in 3.8% of the patients assigned to therapeutic-dose anticoagulation and in 2.3% of those assigned to usual-care pharmacologic thromboprophylaxis.
Conclusions
In critically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin did not result in a greater probability of survival to hospital discharge or a greater number of days free of cardiovascular or respiratory organ support than did usual-care pharmacologic thromboprophylaxis. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 04AUG2021 | Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19 | O’Brien M.P., et al. USA [gotopaper](#) | Therapeutics | Aim: to study whether subcutaneous REGEN-COV (casirivimab/imdevimab) prevents SARS-CoV-2 infection and Covid-19 in persons at high risk for infection because of household exposure to a person with SARS-CoV-2 infection.
- Participants (≥12 years) were enrolled within 96 hours after a household contact received a diagnosis of SARS-CoV-2 infection.
- Treatments: subcutaneous injection of 1200 mg of REGEN-COV or placebo.
- Primary efficacy end point: development of symptomatic SARS-CoV-2 infection through day 28 in participants who did not have SARS-CoV-2 infection (RT-qPCR) or previous immunity (seronegativity).
Results
> Symptomatic SARS-CoV-2 infection developed in 11 of 753 participants in the REGEN-COV group (1.5%) and in 59 of 752 participants in the placebo group (7.8%) (relative risk reduction, 81.4%; P<0.001).
> In weeks 2 to 4, a total of 2 of 753 participants in the REGEN-COV group (0.3%) and 27 of 752 participants in the placebo group (3.6%) had symptomatic SARS-CoV-2 infection (relative risk reduction, 92.6%).
> REGEN-COV also prevented symptomatic and asymptomatic infections overall (relative risk reduction, 66.4%).
> Among symptomatic infected participants, the median time to resolution of symptoms was 2 weeks shorter with REGEN-COV than with placebo (1.2 weeks and 3.2 weeks, respectively), and the duration of a high viral load (>10^4 copies per milliliter) was shorter (0.4 weeks and 1.3 weeks, respectively).
> No dose-limiting toxic effects of REGEN-COV were noted.
Conclusions
Subcutaneous REGEN-COV prevented symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection in previously uninfected household contacts of infected persons. Among the participants who became infected, REGEN-COV reduced the duration of symptomatic disease and the duration of a high viral load. |
| PNAS 03AUG2021 | Predicting the SARS-CoV-2 effective reproduction number using bulk contact data from mobile phones | Rüdiger S., et al. Germany [gotopaper](#) | Public Health / Epidemiology | Aim: Use GPS data in Germany to infer contacts from coproximity of devices, and propose a contact index highly correlated with the incidence-based reproduction number.
Methods:
> Deidentified GPS data of around 1.2 million users in Germany that have opted in to provide the data for research purposes are used to construct a daily contact graph.
> The contact index is defined as the second moment of the degree distribution divided by the mean degree. It accounts for “supercontact” events better than the mean degree.
> The daily mean degree and contact index are compared with the effective reproduction number R for Germany based on a summation of case numbers for 7 days (March-Dec 2020, first and second wave).
Findings:
> The contact index shows a much better correlation with R than the mean degree.
> The Pearson correlation is maximized for a delay of 17 days (0.83, 95% CI [0.79,0.86]), meaning that changes in the contact index precede those in R by more than 2 weeks.
> The analysis of data does not provide significant evidence for an effect of masks in limiting of infection behavior.
Conclusions:
GPS data are only used to obtain a deidentified statistical description of the conditions in which transmission occurs. In particular, they do not need to be blended with case data, contrary to contact tracing apps based on Bluetooth low energy. This reduces the risks of privacy breaches.
> The method could be improved by taking into account transmissions on international travel, the duration of a contact, or the fact that smart phones and the specific apps the data gathering is based on are not used with any groups in the population in the same way. |
Nature 02AUG2021 Behavioral Nudges Increase COVID-19 Vaccinations Dai H., et al. USA gotopaper Vaccines - Immunisation Aim: to present two sequential randomized controlled trials (RCTs) to test the impact of behavioral interventions on COVID-19 vaccine uptake.
- Text-based reminders that make vaccination salient and easy were delivered to patients of a healthcare system one day (first RCT; N=93,354) and eight days (second RCT; N=67,092) after they received notification of vaccine eligibility.
 > The first reminder boosted appointments and vaccination rates within the healthcare system by 6.07 (84%) and 3.57 (26%) percentage points, respectively; the second reminder increased those outcomes by 1.65 and 1.06 percentage points, respectively.
 > The first reminder was more impactful when it made patients feel the vaccine was already theirs.
 > No evidence was found that combining it with an information intervention addressing vaccine hesitancy heightened its effect.
 > Online studies (N=3,181) examining vaccination intentions reveal divergent patterns from the first RCT, underscoring the importance of pilot-testing interventions in the field.

These findings inform the design of behavioral nudges for promoting health decisions, highlighting the value of making vaccination easy and inducing feelings of ownership.

Primary outcomes: reduction of ≥15% in both anti-SARS-CoV-2 IgG seroconversion (SC) and neutralizing antibody (Nab) positivity (day 69 (D69)) after the 2nd dose in the ARD group compared with CG.

Secondary outcomes: IgG SC and Nab positivity at D28, IgG titters and neutralizing activity at D28 and D69 and vaccine safety.

> Prespecified endpoints were met, with lower anti-SARS-CoV-2 IgG SC (70.4 vs 95.5%, P < 0.001) and Nab positivity (56.3 vs 79.3%, P < 0.001) at D69 in the ARD group than in the CG.
> IgG titters (12.1 vs 29.7, P < 0.001) and median neutralization activity (58.7 vs 64.5%, P = 0.013) were also lower at D69 in patients with ARD.
> At D28, patients with ARD presented with lower IgG frequency (18.7 vs 34.6%, P < 0.001) and Nab positivity (20.6 vs 36.3%, P < 0.001) than that of the CG.
> There were no moderate/severe adverse events.

These data support the use of CoronaVac in patients with ARD, suggesting reduced but acceptable short-term immunogenicity.

Science 29JUL2021 Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates Corbett K.S., et al. USA gotopaper Vaccines Aim: to evaluate how multiple measurements of humoral and cellular immunity correlate with the reduction of viral replication in the upper and lower airway following challenge in non human primates (NHPs).

Methods:
NHPs received either no vaccine or doses ranging from 0.3 to 100 μg of SARS-CoV-2 vaccine, mRNA-1273. Tested hypothesis was that serum antibody serves as an immune correlate of protection.

Findings:
> mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner.
> Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of anti-S antibody and neutralizing activity.
> Lower antibody levels are needed for reduction of viral replication in the lower airway than in the upper airway.
> Passive transfer of mRNA-1273-induced IgG to naive hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.

This work delineates spike (S)-specific antibodies as a correlate of protection, highlights the ability of localized mucosal antibodies to control upper and lower airway viral replication, and confirms that mRNA-1273-induced IgG is sufficient for protection against SARS-CoV-2 infection in preclinical models.
Frequency of positive anti-PF4/polyanion antibody tests after COVID-19 vaccination with ChAdOx1 nCoV-19 and BNT162b2

Thiele T., et al. Germany

gotopaper

Vaccines

Aim: to determine the frequency of anti-PF4/polyanion antibodies in healthy vaccinees and assess whether PF4/polyanion EIA+ sera exhibit platelet-activating properties after vaccination with ChAdOx1 nCoV-19 ($n = 138$) or BNT162b2 (BioNTech/Pfizer; $n = 143$).

- In total, 19 of 281 participants tested positive for anti-PF4/polyanion antibodies postvaccination (All: 6.8% [95% CI, 4.4–10.3]; BNT162b2: 5.6% [95% CI, 2.9–10.7]; ChAdOx1 nCoV-19: 8.0% [95% CI, 4.5% to 13.7%]).
- Optical densities were mostly low (between 0.5 and 1.0 units; reference range, <0.50), and none of the PF4/polyanion EIA+ samples induced platelet activation in the presence of PF4.
- Positive PF4/polyanion EIAs can occur after SARS-CoV-2 vaccination with both mRNA- and adenoviral vector-based vaccines, but many of these antibodies likely have minor (if any) clinical relevance.
- Low-titer positive PF4/polyanion EIA results should be interpreted with caution. Pathogenic platelet-activating antibodies that cause vaccine-induced immune thrombotic thrombocytopenia do not occur commonly following vaccination.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>

Methods:
Self-controlled case series (SCCS) and matched cohort study in Sweden. The personal identification numbers of all patients with COVID-19 from Feb 1 to Sept 14, 2020, were identified and cross-linked with national inpatient, outpatient, cancer, and cause of death registers. The SCCS method was used to calculate the incidence rate ratio (IRR) for first acute myocardial infarction or ischaemic stroke following COVID-19 compared with a control period.

Findings:
> 86 742 patients with COVID-19 were included in the SCCS study, and 348 481 matched control individuals were also included in the matched cohort study.
> When day of exposure was excluded from the risk period in the SCCS, the IRR for acute myocardial infarction was 2·89 for the first week, 2·53 for the second week, and 1·60 in weeks 3 and 4 following COVID-19.
> When day of exposure was included in the risk period, IRR was 8·44 for the first week, 2·56 for the second week, and 1·62 for weeks 3 and 4 following COVID-19.
> The corresponding IRRs for ischaemic stroke when day of exposure was excluded from the risk period were 2·97 in the first week, 2·80 in the second week, and 2·10 in weeks 3 and 4 following COVID-19.
> When day of exposure was included in the risk period, the IRRs were 6·18 for the first week, 2·85 for the second week, and 2·14 for weeks 3 and 4 following COVID-19.
> In the matched cohort analysis excluding day 0, the odds ratio (OR) for acute myocardial infarction was 3·41 and for stroke was 3·63 in the 2 weeks following COVID-19. When day 0 was included in the study, the OR for acute myocardial infarction was 6·61 and for ischaemic stroke was 6·74 in the 2 weeks following COVID-19.

The findings suggest that COVID-19 is a risk factor for acute myocardial infarction and ischaemic stroke. |
Aim: to study the efficacy and safety of tofacitinib, a Janus kinase inhibitor, in patients who are hospitalized with Covid-19 pneumonia.

Patients received either tofacitinib at a dose of 10 mg or placebo twice daily for up to 14 days or until hospital discharge.

Primary outcome: occurrence of death or respiratory failure through day 28 as assessed with the use of an eight-level ordinal scale.

Results

> A total of 289 patients underwent randomization at 15 sites in Brazil. Overall, 89.3% of the patients received glucocorticoids during hospitalization.

> The cumulative incidence of death or respiratory failure through day 28 was 18.1% in the tofacitinib group and 29.0% in the placebo group (risk ratio, 0.63; 95% CI, 0.41 to 0.97; *P*=0.04).

> Death from any cause through day 28 occurred in 2.8% of the patients in the tofacitinib group and in 5.5% of those in the placebo group (hazard ratio, 0.49; 95% CI, 0.15 to 1.63).

> The proportional odds of having a worse score on the eight-level ordinal scale with tofacitinib, as compared with placebo, was 0.60 (95% CI, 0.36 to 1.00) at day 14 and 0.54 (95% CI, 0.27 to 1.06) at day 28.

> Serious adverse events occurred in 20 patients (14.1%) in the tofacitinib group and in 17 (12.0%) in the placebo group.

Conclusions

Among patients hospitalized with Covid-19 pneumonia, tofacitinib led to a lower risk of death or respiratory failure through day 28 than placebo.

Aim: to characterize breakthrough infections and define correlates of breakthrough and infectivity in healthcare workers (HCW) who received the BNT162b2 vaccine.

- Full epidemiologic analysis of HCW who were symptomatic or had known infection exposures.
- Correlates of breakthrough infection assessed in a case–control analysis, matching patients with breakthrough infection who had antibody titers obtained within a week before SARS-CoV-2 detection (peri-infection period) with 4–5 uninfected controls
- Correlation between neutralizing antibody titers and N gene cycle threshold (Ct) values with respect to infectivity was assessed.

Results

> Among 1497 fully vaccinated HCW for whom RT-PCR data were available, 39 SARS-CoV-2 breakthrough infections were documented.

> Neutralizing antibody titers in case patients during the peri-infection period were lower than those in matched uninfected controls (case-to-control ratio, 0.361; 95% CI, 0.165 to 0.787).

> Higher peri-infection neutralizing antibody titers were associated with lower infectivity (higher Ct values).

> Most breakthrough cases were mild or asymptomatic, although 19% had persistent symptoms (>6 weeks).

> The B.1.1.7 (alpha) variant was found in 85% of samples tested.

> A total of 74% of case patients had a high viral load (Ct value, <30) at some point during their infection; however, of these patients, only 17 (59%) had a positive result on concurrent Ag-RDT.

> No secondary infections were documented.

Conclusions

Among fully vaccinated HCW, the occurrence of breakthrough infections with SARS-CoV-2 was correlated with neutralizing antibody titers during the peri-infection period. Most breakthrough infections were mild or asymptomatic, although persistent symptoms did occur.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 28JUL2021 | Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine | Oberhardt V., et al. Germany gotopaper | Vaccines | Aim: to assess vaccine-induced CD8+ T cells response, compared to natural infection, and associated with other arms of vaccine-induced immunity.

Methods: Continuous longitudinal analyses starting at baseline of prime vaccination until 3-4 months after boost on a single epitope level, to track the trajectories of bnt162b2 vaccine-elicited spike-specific CD8+ T cell responses in comparison to spike-specific CD4+ T cells, B cells, antibodies and their neutralizing activity.

Findings: > On a single epitope level, a stable and fully functional CD8+ T cell response is vigorously mobilized one week after bnt162b2 prime vaccination when circulating CD4+ T cells and neutralizing antibodies are still weakly detectable.
> Boost vaccination induced a robust expansion generating highly differentiated effector CD8+ T cells however, neither the functional capacity nor the memory precursor T cell pool was affected.
> Compared to natural infection, vaccine-induced early memory T cells exhibited similar functional capacities but a different subset distribution.
> CD8+ T cells are important effector cells, expanded in the early protection window after prime vaccination, precede maturation of other effector arms of vaccine-induced immunity and are stably maintained after boost vaccination. |
| Blood 28JUL2021 | Aberrant glycosylation of anti-SARS-CoV-2 IgG is a pro-thrombotic stimulus for platelets | Bye A.P., et al. Netherlands / UK gotopaper | Therapeutics | Aim: to investigate the effects of low fucosylation and high galactosylation of anti-75 spike IgG on platelet activation to find the significance of aberrant IgG glycosylation identified in critically-ill COVID-19 patients on platelet-mediated thrombus formation.

Findings: > Immune complexes containing recombinant SARS-CoV-2 spike protein and anti-spike IgG enhanced platelet-mediated thrombosis on von Willebrand Factor in vitro, but only when the glycosylation state of the Fc domain was modified to correspond with the aberrant glycosylation previously identified in patients with severe COVID-19.
> Activation was dependent on FcγRIIA and the authors provide in vitro evidence that this pathogenic platelet activation can be counteracted by therapeutic small molecules R406 (fostamatinib) and ibrutinib that inhibits tyrosine kinases Syk and Btk respectively or by the P2Y12 antagonist cangrelor.
> Immobilised immune complexes containing recombinant anti-spike IgG with low fucosylation and high galactosylation activate platelets to enhance thrombus formation on vWF, which is also elevated in severely ill COVID-19 patients.
> Potential COVID-19 therapies such as fostamatinib or acalabrutinib, targeting Syk or Btk respectively, may be effective in limiting the inflammatory response and reducing platelet-mediated thrombosis. |
| Science Transl. Med. 27JUL2021 | Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models | van Doremalen N., et al. USA gotopaper | Vaccines | Aim: to investigate whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein.

Results: > Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge.
> Intranasal vaccination of hamsters protected against SARS-CoV-2 infection during direct contact with infected hamsters – no viral RNA or infectious virus was found in lung tissue after direct contact with infected hamsters.
> Intranasal vaccination in rhesus macaques induced humoral and cellular immune responses and protected from infection.
> Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue.

Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines. |
Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: cross sectional study

Schuit E., et al. Netherlands

Diagnostics

Aim: to assess the diagnostic test accuracy of two rapid antigen tests in asymptomatic and presymptomatic close contacts of people with SARS-CoV-2 infection on day 5 after exposure.

> 4274 consecutively included close contacts (identified through test-and-trace programme or contact tracing app) aged 16 years or older and asymptomatic for covid-19 when requesting a test.

> Main outcomes: Sensitivity, specificity, and positive and negative predictive values of Veritor System (Roche Diagnostics) and Biosensor (Roche Diagnostics) rapid antigen tests.

Findings:

> Of 2678 participants tested with Veritor, 233 (8.7%) had a RT-PCR confirmed SARS-CoV-2 infection of whom 149 were also detected by the rapid antigen test (sensitivity 63.9%).

> Of 1596 participants tested with Biosensor, 132 (8.3%) had a RT-PCR confirmed SARS-CoV-2 infection of whom 83 were detected by the rapid antigen test (sensitivity 62.9%).

> In those who were still asymptomatic at the time of sampling, sensitivity was 58.7% for Veritor (n=2317) and 59.4% for Biosensor (n=1414).

> In those who developed symptoms were 84.2% (n=219) for Veritor and 73.3% (n=158) for Biosensor.

> Specificities were >99%, and positive and negative predictive values were >90% and >95%, for both rapid antigen tests in all analyses.

The sensitivities of both rapid antigen tests in asymptomatic and presymptomatic close contacts tested on day 5 onwards after close contact with an index case were >60%, increasing to more than 85% after a viral load cut-off was applied as a proxy for infectiousness.

Aim: to assess the efficacy of doxycycline to treat suspected COVID-19 in the community among people at high risk of adverse outcomes.

Methods

> People aged ≥65 years, or ≥50 years with comorbidities who had been unwell (for ≤14 days) with suspected COVID-19 or a positive PCR test for SARS-CoV-2 infection in the community

> Coprimary endpoints: time to first self-reported recovery, and hospitalisation or death related to COVID-19, both measured over 28 days from randomisation and analysed by intention to treat.

Results

> 2689 participants were enrolled and randomised between April 2, 2020 to Dec 14, 2020.

> Of these, 2508 (93.3%) participants contributed follow-up data and were included in the primary analysis: 780 (31.1%) in the usual care plus doxycycline group, 948 in the usual care only group (37.8%), and 780 (31.1%) in the usual care plus other interventions group.

> Among the 1792 participants randomly assigned to the usual care plus doxycycline and usual care only groups, the mean age was 61.1 years (SD 7.9); 999 (55.7%) participants were female and 790 (44.1%) were male.

> In the primary analysis model, there was little evidence of difference in median time to first self-reported recovery between the usual care plus doxycycline group and the usual care only group (9.6 [95% Bayesian Credible Interval [BCI] 8.3 to 11.0] days vs 10.1 [8.7 to 11.7] days, hazard ratio 1.04 [95% BCI 0.93 to 1.17]). The estimated benefit in median time to first self-reported recovery was 0.5 days [95% BCI =0.99 to 2.04] and the probability of a clinically meaningful benefit (defined as ≥1.5 days) was 0.10.

> Hospitalisation or death related to COVID-19 occurred in 41 (crude percentage 5.3%) participants in the usual care plus doxycycline group and 43 (4.5%) in the usual care only group (estimated absolute percentage difference =0.5% [95% BCI =–2.6 to 1.4%]; there were five deaths (0.6%) in the usual care plus doxycycline group and two (0.2%) in the usual care only group.

> In patients with suspected COVID-19 in the community in the UK, who were at high risk of adverse outcomes, treatment with doxycycline was not associated with clinically meaningful reductions in time to recovery or hospital admissions or deaths related to COVID-19, and should not be used as a routine treatment for COVID-19.
Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy

Manica M., et al.

Italy

gotopaper

Public Health / Epidemiology

Key facts

Aim: Evaluate the impact on human mobility and SARS-CoV-2 transmissibility of the three-tiered regional restriction system introduced by the Italian government in autumn 2020

Context:
> In Italy, starting from November 6, 2020, a three-tiered restriction system was introduced
> In each of the 21 regions and autonomous provinces, based on the combination of several quantitative indicators, restriction measures were applied according to three tiers (yellow, orange and red from the less to the most restrictive)
> Restriction measures consist in limitations of retail, service activities and individual movement, and reinforced distance-learning in schools

Methods:
> Mobility data: Google community mobility reports at the provincial level from September 25 to November 25, 2020
> Estimation of the net reproduction number R(t) from the epidemic curve of symptomatic cases, as the weekly moving average of the maximum a posteriori of a likelihood function where the serial interval is estimated from the analysis of contact tracing in Lombardy
> The association between tiers and changes in human mobility and of R(t) is modeled by linear mixed models
> Several models are considered, with alternative choices of target variables, level of geographic aggregation, selection of regions and duration of the serial interval

Findings:
> Significant and progressive reduction of the time spent outside of home, especially in locations associated with recreational and retail activities, and public transport
> The activity reduction in all locations outside of home was far from that observed during the nationwide lockdown imposed in Italy during the first wave
> The reproduction numbers were close to 1 in the week November 19-25 in the yellow tier, and were significantly below 1 in orange and red tiers
> The relative mean reduction of R(t) between the week October 30-November 5 and the week November 19-25 is estimated to be of 13-19% in the yellow tier, 27-38% in the orange tier and 36-45% in the red tier, consistently across all models
> The authors estimate that the reduction in transmissibility averted about 24 500 hospital admissions between November 6 and 25, 2020

Conclusions:
> Stricter restrictions (orange and red tiers) were associated with a decreasing incidence and the most permissive tier (yellow) was sufficient to reduce the reproduction number to values close to the epidemic threshold
> The tier system resulted in a much lower impact on human activities compared to lockdown and in large reduction in daily hospitalizations
Aim: observational study on immunogenicity and reactogenicity of heterologous priming with the ChAdOx1 nCoV-19 vector vaccine followed by boosting with a messenger RNA vaccine (BNT162b2 or mRNA-1273).

Results
- In healthy adult individuals (n = 96), the heterologous vaccine regimen induced spike-specific IgG, neutralizing antibodies and spike-specific CD4 T cells, the levels of which were significantly higher than after homologous vector vaccine boost (n = 55) and higher or comparable in magnitude to homologous mRNA vaccine regimens (n = 62).
- Spike-specific CD8 T cell levels after heterologous vaccination were significantly higher than after both homologous regimens.
- Spike-specific T cells were predominantly polyfunctional with largely overlapping cytokine-producing phenotypes in all three regimens.
- Recipients of both the homologous vector regimen and the heterologous vector/mRNA combination reported greater reactogenicity following the priming vector vaccination, whereas heterologous boosting was well tolerated and comparable to homologous mRNA boosting.

Heterologous vector/mRNA boosting induces strong humoral and cellular immune responses with acceptable reactogenicity profiles.

Aim: Phase 1 trial to evaluate safety and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults without COVID-19 from China.

- Participants were randomly assigned (1:1:1:1:1) into five groups to be vaccinated via intramuscular injection, aerosol inhalation, or both.
- Aerosol groups received an initial high dose (2 × 10¹⁰ viral particles; HDmu group) or low dose (1 × 10¹⁰ viral particles; LDmu group) of Ad5-nCoV vaccine on day 0, followed by a booster on day 28.
- Mixed vaccination group received an initial intramuscular (5 × 10¹⁰ viral particles) vaccine on day 0, followed by an aerosolised booster (2 × 10¹⁰ viral particles) vaccine on day 28 (MIX group).
- Intramuscular groups received one dose (5 × 10¹⁰ viral particles; 1Dim group) or two doses (10 × 10¹⁰ viral particles; 2Dim group) of Ad5-nCoV on day 0.

Primary safety outcome: adverse events 7 days after each vaccination

Primary immunogenicity outcome: anti-SARS-CoV-2 S IgG antibody and SARS-CoV-2 neutralising antibody geometric mean titres at day 28

Results
- 130 participants were enrolled into the trial and randomly assigned into one of the five groups (26 participants per group).
- Within 7 days after vaccination, adverse events occurred in 18 (69%) in the HDmu group, 19 (73%) in the LDmu group, 19 (73%) in the MIX group, 19 (73%) in the 1Dim group, and 15 (58%) in the 2Dim group.
- The most common adverse events reported 7 days after the first or booster vaccine were fever (62 [48%] of 130 participants), fatigue (40 [31%]), and headache (46 [35%]).
- More adverse events were reported in participants who received intramuscular vaccination, including participants in the MIX group (49 [63%]) of 78 participants, than those who received aerosol vaccine (13 [25%]) of 52 participants after the first vaccine vaccination.
- No serious adverse events within 56 days after the first vaccine.
- At days 28 after last vaccination, geometric mean titres of SARS-CoV-2 neutralising antibody was 107 (95% CI 47–245) in the HDmu group, 105 (47–232) in the LDmu group, 396 (207–758) in the MIX group, 95 (61–147) in the 1Dim group, and 180 (113–288) in the 2Dim group.
- Geometric mean concentrations of RBD-binding IgG was 261 EU/mL (95% CI 121–563) in HDmu group, 289 EU/mL (138–606) in LDmu group, 2013 EU/mL (1180–3435) in MIX group, 915 EU/mL (588–1423) in the 1Dim group, and 1190 EU/mL (776–1824) in the 2Dim group.

Conclusions
- Aerosolised Ad5-nCoV is well tolerated, and two doses of aerosolised Ad5-nCoV elicited neutralising antibody responses, similar to one dose of intramuscular injection.
- An aerosolised booster vaccination at 28 days after 1st intramuscular injection induced strong IgG and neutralising antibody responses.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Cell 23JUL2021 | Memory B Cell Repertoire for Recognition of Evolving SARS-CoV-2 Spike | Tong P., et al. USA gotopaper | Immunology | **Aim:** to chart memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S)
Methods: Global assessment of the distribution of memory B-cell encoded antibodies among cooperative and competitive recognition clusters on the SARS-CoV-2 S glycoprotein to examine features that direct their collaborative robustness against emerging SARS-CoV-2 variants. And a comprehensive competition analysis of 152 monoclonal antibodies (mAbs) from 19 subjects for binding with trimeric S ectodomain.
Findings: > 7 major epitopic regions of SARS-CoV-2 spike are consistently targeted by human Abs
> Ab group assignment correlates with CoV binding breadth and neutralization potency
> SARS-CoV-2 variants tend to escape Abs from the groups with most potent neutralizers
> Intra-group Ab binding redundancy confers robustness against emerging variants
The study furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants. |
| NEJM 22JUL2021 | Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines | Thompson M.G., et al. USA gotopaper | Vaccines - Immunisation | **Aim:** to study the effectiveness of the two-dose mRNA vaccines BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna) in preventing infection with SARS-CoV-2 and in attenuating Covid-19 when administered in real-world conditions.
Methods > Prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative RT-PCR analysis
Results > SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded.
> Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination.
> Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants.
> In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7).
> Authorized mRNA vaccines were highly effective among working-age adults in pre-venting SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEJM 21JUL2021</td>
<td>Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant</td>
<td>Lopez Bernal J., et al. UK gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to determine the effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against symptomatic COVID-19 due to Delta variant in a real-world setting. Results > Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% CI, 25.2-35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5-51.7); the results were similar for both vaccines. > With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. > With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. Conclusions Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose.</td>
</tr>
<tr>
<td>JAMA 20JUL2021</td>
<td>Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19 - A Randomized Clinical Trial</td>
<td>Caricchio R., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Aim: To evaluate the efficacy of canakinumab, an anti–interleukin-1β antibody, in patients hospitalized with severe COVID-19. Methods: Randomized, double-blind, placebo-controlled phase 3 trial. 454 hospitalized patients with COVID-19 pneumonia, hypoxia (no invasive mechanical ventilation [IMV]), systemic hyperinflammation. Patients were randomly assigned 1:1 to receive a single intravenous infusion of canakinumab (450 mg for body weight of 40–60 kg, 600 mg for 60–80 kg, and 750 mg for >80 kg; n = 227) or placebo (n = 227). Primary outcome: survival without IMV from day 3 to day 29. Findings: > Among 454 patients who were randomized (median age, 59 years; 187 women [41.2%]), 417 (91.9%) completed day 29 of the trial. > Between days 3 and 29, 198 of 223 patients (88.8%) survived without requiring IMV in the canakinumab group and 191 of 223 (85.7%) in the placebo group, with a rate difference of 3.1% (95% CI, −3.1% to 9.3%) and an odds ratio of 1.39 (95% CI, 0.76 to 2.54; P = .29). > COVID-19–related mortality occurred in 11 of 223 patients (4.9%) in the canakinumab group vs 16 of 222 (7.2%) in the placebo group, with a rate difference of −2.3% (95% CI, −6.7% to 2.2%) and an odds ratio of 0.67 (95% CI, 0.30 to 1.50). > Serious adverse events were observed in 36 of 225 patients (16%) treated with canakinumab vs 46 of 223 (20.6%) who received placebo. Among patients hospitalized with severe COVID-19, treatment with canakinumab, compared with placebo, did not significantly increase the likelihood of survival without IMV at day 29.</td>
</tr>
<tr>
<td>Nature 19JUL2021</td>
<td>Broad sarbecovirus neutralization by a human monoclonal antibody</td>
<td>Tortorici M.A., et al. International gotopaper</td>
<td>Therapeutics</td>
<td>Background The recent emergence of SARS-CoV-2 VOC highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Findings > S2X259 mAb identified from the memory B cells of a COVID-19 convalescent individual, > S2X259 recognizes a highly conserved cryptic RBD epitope and cross-reacting with spikes from all sarbecovirus clades. > S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1, B.1.427/B.1.429 VOC, as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. > S2X259 possesses an escape profile limited to the single substitution G504D. > Prophylactic and therapeutic administration of S2X259 protects Syrian hamsters against challenge with the prototypic SARS-CoV-2 and the B.1.351 VOC Conclusions S2X259 is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Methods:
- Multinational, placebo-controlled, observer-blinded trial,
- Two injections, 21 days apart, of 30 μg of BNT162b2 or placebo,
- Immunogenicity objective: noninferiority of the immune response to BNT162b2 in 12-to-15-year-old participants as compared with that in 16-to-25-year-old participants
- Safety endpoint: reactogenicity and adverse events and efficacy against confirmed coronavirus disease 2019 (Covid-19; onset, ≥7 days after dose 2) in the 12-to-15-year-old cohort

Findings:
- 2260 adolescents 12 to 15 years of age received injections (1131 BNT162b2, 1129 placebo).
- BNT162b2 had a favorable safety and side-effect profile, with mainly transient mild-to-moderate reactogenicity: - injection-site pain [in 79 to 86% of participants], - fatigue [in 60 to 66%], - headache [in 55 to 65%]
- No vaccine-related serious adverse events and few overall severe adverse events.
- The geometric mean ratio of SARS-CoV-2 50% neutralizing titers after dose 2 in 12-to-15-year-old participants relative to 16-to-25-year-old participants was 1.76 (95% confidence interval [CI], 1.47 to 2.10), (noninferiority criterion met > greater response in the 12-to-15-year-old cohort).
- Among participants without evidence of previous SARS-CoV-2 infection, no Covid-19 cases with an onset of 7 or more days after dose 2 were noted among BNT162b2 recipients, and 16 cases occurred among placebo recipients.
- The observed vaccine efficacy was 100% (95% CI, 75.3 to 100).

Conclusions:
- BNT162b2 vaccine in 12-to-15-year-old recipients had a favorable safety profile, produced a greater immune response than in young adults, and was highly effective against Covid-19.

Methods: Multicenter retrospective cohort study, the patients were classified into 1 of 3 groups for analysis: COVID-19, MIS-C, or asymptomatic SARS-CoV-2.

Standard statistical methods were used to summarize the data: frequency and percentage for categorical variables, and median and interquartile range for continuous scaled variables.

Findings:
- Among a total of 853 admissions (COVID-19, n = 426; MIS-C, n = 138; and asymptomatic SARS-CoV-2, n = 289) in 814 patients, there were 20 patients with thrombotic events (TEs; including 1 stroke).
- Patients with MIS-C had the highest incidence (9 [6.5%] of 138) vs COVID-19 (9 [2.1%] of 426) or asymptomatic SARS-CoV-2 (2 [0.7%] of 289).
- In patients with COVID-19 or MIS-C, a majority of TEs (89%) occurred in patients age ≥12 years. Patients age ≥12 years with MIS-C had the highest rate of thrombosis at 19% (9 of 48).
- Notably, 71% of TEs that were not present on admission occurred despite thromboprophylaxis.
- Multivariable analysis identified the following as significantly associated with thrombosis: age ≥12 years, cancer, presence of a central venous catheter, and MIS-C. In patients with COVID-19 or MIS-C, hospital mortality was 2.3% (13 of 564), but it was 28% (5 of 18) in patients with TEs.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Main Outcomes: time to death within 30 days of remdesivir treatment, time to hospital discharge with time to death as a competing event.
Results: > Analysis included 1172 remdesivir recipients and 1172 controls, for a final matched cohort of 2344 individuals. Remdesivir recipients and matched controls were similar with regard to age (mean [SD], 66.6 [14.2] vs 67.5 [14.1] years), sex (1110 [93.9%] vs 1110 men [93.9%]), dexamethasone use (559 [47.7%] vs 559 [47.7%]), admission to the intensive care unit (242 [20.7%] vs 234 [19.1%]), and mechanical ventilation use (69 [5.9%] vs 45 [3.8%]).
> Remdesivir treatment was not associated with 30-day mortality (143 remdesivir recipients [12.2%] vs 124 controls [10.6%]; log rank P = .26; adjusted HR, 1.06; 95% CI, 0.83–1.36).
> Similar results for people receiving vs not receiving dexamethasone at remdesivir initiation (d. recipients: adjusted HR, 0.93; 95% CI, 0.64–1.35; nonrecipients: adjusted HR, 1.19; 95% CI, 0.84–1.69).
> Remdesivir recipients had a longer median time to hospital discharge compared with matched controls (6 days [interquartile range, 4–12 days] vs 3 days [1–7 days]; P < .001).
Conclusions: In this cohort study, remdesivir treatment was not associated with improved survival but was associated with longer hospital stays. |
Results: > Median follow-up was 14 days for both remdesivir (n=352) and control (n=1,347) groups. COVID-19 patients were hospitalised between Jan 2020 and Jan 2021.
> Time to clinical improvement was significantly shorter in the remdesivir group than that of control (HR[95%CI]=1.14[1.01–1.29], p=0.038), as well as for achieving low viral load (1.51[1.24–1.83], p<0.001) and positive IgG antibody (1.50[1.31–1.70], p<0.001).
> Early remdesivir treatment was associated with a lower risk of in-hospital death (HR=0.58, 95%CI 0.34-0.99, p=0.045), in addition to a significantly shorter length of hospital stay (difference -2.56 days, 95%CI -4.86 to -0.26, p=0.029), without increasing the risks of composite outcomes for clinical deterioration.
Conclusions: Early remdesivir treatment could be extended to hospitalized patients with moderate COVID-19 not requiring oxygen therapy on admission. |
Methods: 730 adults undergoing SARS-CoV-2 testing at community testing events and homeless shelters. Specimens were tested by rRT-PCR; viral culture was performed on a subset of positive specimens. The sensitivity of SS and ANS for SARS-CoV-2 detection by rRT-PCR was measured against that of NPS.
Findings: > Sensitivity for SARS-CoV-2 detection by rRT-PCR appeared higher for SS than for ANS (85% vs 80%) and higher among asymptomatic participants than among those without symptoms (94% vs 29% for SS; 87% vs 50% for ANS).
> Among participants with culture-positive SARS-CoV-2 by any specimen type, the sensitivities of SS and ANS by rRT-PCR were 94% and 100%, respectively.
> SS and ANS were equally preferred by participants; most would undergo NPS collection despite this method being the least preferred.
Self-collected SS and ANS offered practical advantages, are preferred by patients, and might be most useful for testing people with coronavirus disease 2019 symptoms. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 14JUL2021 | Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19 | Dougan M., et al. USA | Therapeutics | Phase 3 trial of bamlanivimab/etesevimab in a cohort of ambulatory patients with mild or moderate Covid-19 who were at high risk for progression to severe disease.
- Treatment: 2800 mg of bamlanivimab and 2800 mg of etesevimab (single IV infusion) or placebo within 3 days after a laboratory diagnosis of SARS-CoV-2 infection.
- Primary outcome: overall clinical status of the patients, defined as Covid-19–related hospitalization or death from any cause by day 29. |
| NEJM 14JUL2021 | Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination | Barouch D.H., et al. Netherlands/USA | Vaccines | Aim: to describe the 8-month durability of humoral and cellular immune responses in 20 participants who received the Ad26.COV2.S vaccine in one or two doses (either 5×1010 viral particles or 1011 viral particles) and in 5 participants who received placebo.
Results
> Antibody responses were detected in all vaccine recipients on day 239 (8 months after the single-shot vaccine regimen or 6 months after the two-shot vaccine regimen)
> The median binding antibody titer against the WA1/2020 receptor-binding domain was 645 on day 29, 1772 on day 57, 1962 on day 71, and 1306 on day 239.
> The median WA1/2020 pseudovirus neutralizing antibody titer was 272 on day 29, 169 on day 57, 340 on day 71, and 192 on day 239.
> Antibody responses were relatively stable during the 8-month period.
> On day 29, the median neutralizing antibody titer against the B.1.351 variant was lower by a factor of 13 than the response against WA1/2020; however, by day 239, that factor difference had decreased to 3
> Spike-specific interferon-γ CD8+ and CD4+ T-cell responses also showed durability and stability over the study period.
Conclusions
Ad26.COV2.S vaccine elicited durable humoral and cellular immune responses with minimal decreases for at least 8 months after immunization. An expansion of neutralizing antibody breadth against SARS-CoV-2 variants was observed over the study period, suggesting maturation of B-cell responses even without further boosting. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Med. | Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination | Barros-Martins J., et al. Germany | Vaccines - Immunisation | Aim: to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer’s BNT162b2 (n = 55), using Hannover Medical School’s COVID-19 Contact Study cohort of healthcare professionals.
> Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells.
> BNT162b2 induced high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.
> BNT/BNT-vaccinated and ChAd/BNT-vaccinated individuals develop neutralizing antibodies to similar degrees 2–3 weeks after booster vaccination. Likewise, immune responses of the ChAd/ChAd group were in the range of earlier reported results. |
Aim: to present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 spike protein binding to the angiotensin converting enzyme 2 (ACE2) receptor.
> This high-throughput method matches the performance of the gold standard live virus infection assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific IgG titers, achieving 96.7% sensitivity and 100% specificity.
> It allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 spike protein variants of concern.
> This assay was used to profile serum samples from 59 patients hospitalized with coronavirus disease 2019 (COVID-19). Although most sera had high activity against the 2019-nCoV parental spike protein and, to a lesser extent, the α (B.1.1.7) variant, only 58% of serum samples could efficiently neutralize a spike protein derivative containing mutations present in the β (B.1.351) variant.
The presented assay can evaluate effective neutralizing antibody responses to SARS-CoV-2 spike protein variants of concern after natural infection and can be applied to characterize vaccine-induced antibody responses or to assess the potency of monoclonal antibodies. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| JAMA Intern Med. 13JUL2021 | Association of BNT162b2 mRNA and mRNA-1273 Vaccines With COVID-19 Infection and Hospitalization Among Patients With Cirrhosis | John B.V., et al. USA [gotopaper](#) | Vaccines - Immunisations | **Aim:** to study the association of receipt of the Pfizer BNT162b2 mRNA or the Moderna mRNA-1273 vaccines in patients with cirrhosis compared with a propensity-matched control group of patients at similar risk of infection and severe disease from COVID-19.
- Patients who received at least 1 dose of an mRNA vaccine (n = 20,037) were propensity matched with 20,037 controls to assess the associations of vaccination with new COVID-19 infection and COVID-19 hospitalization and death.
Results > The median (interquartile range) age of the vaccinated individuals in the study cohort was 69.1 (8.4) years and 19,465 (97.2%) of the participants in each of the vaccinated and unvaccinated groups were male, consistent with a US veteran population. The mRNA-1273 vaccine was administered in 10,236 (51%) and the BNT162b2 mRNA in 9,801 (49%) patients. > The number of COVID-19 infections in the vaccine recipients was similar to the control group in days 0 to 7, 7 to 14, 14 to 21, and 21 to 28 after the first dose. > After 28 days, receipt of 1 dose of an mRNA vaccine was associated with a 64.8% reduction in COVID-19 infections and 100% protection against hospitalization or death due to COVID-19 infection. > The association of reduced COVID-19 infections after the first dose was lower among patients with decompensated (50.3%) compared with compensated cirrhosis (66.8%). > Receipt of a second dose was associated with a 78.6% reduction in COVID-19 infections and 100% reduction in COVID-19–related hospitalization or death after 7 days.
Conclusions This study found that mRNA vaccine administration was associated with a delayed but modest reduction in COVID-19 infection but an excellent reduction in COVID-19–related hospitalization or death in patients with cirrhosis. |
| JAMA 12JUL2021 | Association Between BNT162b2 Vaccination and Incidence of SARS-CoV-2 Infection in Pregnant Women | Goldshtein I., et al. Israel [gotopaper](#) | Vaccines | **Aim:** to assess the association between receipt of BNT162b2 mRNA vaccine and risk of SARS-CoV-2 infection among pregnant women.
- Pregnant women vaccinated with a first dose from December 19, 2020, through February 28, 2021, were 1:1 matched to unvaccinated women by age, gestational age, residential area, population subgroup, parity, and influenza immunization status.
- **Primary outcome:** PCR–validated SARS-CoV-2 infection at ≥28 days after the first vaccine dose.
Results > The cohort included 7530 vaccinated and 7530 matched unvaccinated women, 46% and 33% in the second and third trimester, respectively, with a mean age of 31.1 years (SD, 4.9 years). The median follow-up for the primary outcome was 37 days (interquartile range, 21-54 days; range, 0-70). > There were 118 SARS-CoV-2 infections in the vaccinated group and 202 in the unvaccinated group. Among infected women, 88 of 105 (83.8%) were symptomatic in the vaccinated group vs 149 of 179 (83.2%) in the unvaccinated group (P ≥ .99). > During 28 to 70 days of follow-up, there were 10 infections in the vaccinated group and 46 in the unvaccinated group. > The hazards of infection were 0.33% vs 1.64% in the vaccinated and unvaccinated groups, respectively, representing an absolute difference of 1.31% (95% CI, 0.89%-1.74%), with an adjusted hazard ratio of 0.22 (95% CI, 0.11-0.43). > Vaccine-related adverse events were reported by 68 patients; none was severe. The most commonly reported symptoms were headache (n = 10, 0.1%), general weakness (n = 8, 0.1%), nonspecific pain (n = 6, <0.1%), and stomachache (n = 5, <0.1%).
Conclusions In this study on pregnant women, BNT162b2 mRNA vaccination compared with no vaccination was associated with a significantly lower risk of SARS-CoV-2 infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet Public Health 09JUL2021 | Genomics-informed responses in the elimination of COVID-19 in Victoria, Australia: an observational, genomic epidemiological study | Lane C.R., et al. Australia [gotopaper](#) | Public Health / Epidemiology | **Aim:** to describe the genomic findings that located the source of the second wave in Victoria, Australia, and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time.
> Between Jan 25, 2020, and Jan 31, 2021, there were 20,451 laboratory-confirmed cases of COVID-19 in Victoria, Australia, of which 15,431 were submitted for sequencing, and 11,711 met all quality control metrics and were included in the analysis.
> 595 genomic clusters were identified, with a median of 5 cases per cluster (IQR 2–11).
> Samples from 11,503 (98.2%) of 11,711 cases clustered with another sample in Victoria, either within a genomic cluster or transmission network.
> Genomic analysis revealed that 10,426 cases, including 10,416 (98.4%) of 10,584 locally acquired cases, diagnosed during the second wave (between June and October, 2020) were derived from a single incursion from hotel quarantine, with the outbreak lineage (transmission network G, lineage D.2) rapidly detected in other Australian states and territories.
> Phylogenetic analyses indicated that the epidemic growth rate of the outbreak lineage in Victoria during the initial growth phase (samples collected between June 4 and July 9, 2020; 47.4% putative transmission events, per branch, per year [1/years; 95% credible interval 26.0–85.0]), was similar to that of other reported variants, such as B.1.1.7 in the UK (mean approximately 71.5 1/years).
> Strict interventions were implemented, and the outbreak lineage has not been detected in Australia since Oct 29, 2020. Subsequent cases represented independent international or interstate introductions, with limited local spread.
> This study highlights how rapid escalation of clonal outbreaks can occur from a single incursion, and effectiveness of public health responses. Real-time genomic surveillance can alter the way in which public health agencies view and respond to COVID-19 outbreaks. |
| Nature Med. 09JUL2021 | mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar | Chemaitelly H., et al. Qatar [gotopaper](#) | Vaccines - Variants | **Aim:** to assess the real-world effectiveness of the mRNA-1273 vaccine against SARS-CoV-2 variants of concern, specifically B.1.1.7 (Alpha) and B.1.351 (Beta), in Qatar, a population that comprises mainly working-age adults, using a matched test-negative, case-control study design.
> Vaccine effectiveness was negligible for 2 weeks after the first dose, but increased rapidly in the third and fourth weeks immediately before administration of a second dose.
> Effectiveness against B.1.1.7 infection was 88.1% (95% confidence interval (CI): 83.7–91.5%) ≥14 days after the first dose but before the second dose, and was 100% (95% CI: 91.8–100.0%) ≥14 days after the second dose.
> Analogous effectiveness against B.1.351 infection was 61.3% after the first dose (95% CI: 56.5–65.5%) and 96.4% after the second dose (95% CI: 91.9–98.7%).
> Effectiveness against any severe, critical or fatal COVID-19 disease due to any SARS-CoV-2 infection (predominantly B.1.1.7 and B.1.351) was 81.6% (95% CI: 71.0–88.8%) and 95.7% (95% CI: 73.4–99.9%) after the first and second dose, respectively.
> The mRNA-1273 vaccine is highly effective against B.1.1.7 and B.1.351 infections, whether symptomatic or asymptomatic, and against any COVID-19 hospitalization and death, even after a single dose. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Lancet Global Health** | **Difference in mortality among individuals admitted to hospital with COVID-19 during the first and second waves in South Africa: a cohort study** | Jassat W., et al. South Africa [gotopaper](#) | Public Health / Epidemiology | **Aim:** to compare in-hospital mortality and other patient characteristics between the COVID-19 first wave and second wave (SARS-CoV-2 S01Y.V2 (Beta) lineage predominant) in South Africa.
Results
> Peak rates of COVID-19 cases, admissions, and in-hospital deaths in the second wave exceeded rates in the first wave: COVID-19 cases, 240.4 cases per 100,000 people vs 136.0 cases per 100,000 people; admissions, 27.9 admissions per 100,000 people vs 16.1 admissions per 100,000 people; deaths, 8.3 deaths per 100,000 people vs 3.6 deaths per 100,000 people.
> The weekly average growth rate in hospital admissions was 20% in wave 1 and 43% in wave 2 (ratio of growth rate in wave 2 compared with wave 1 was 1.19, 95% CI 1.18–1.20).
> Compared with the first wave, individuals admitted to hospital in the second wave were more likely to be age 40–64 years (adjusted odds ratio [aOR] 1.22, 95% CI 1.14–1.31), and ≥65 years (aOR 1.38, 1.25–1.52), compared with younger than 40 years; of African race (aOR 1.21, 1.06–1.38) compared with White race; and admitted in the public sector (aOR 1.65, 1.41–1.92); and less likely to be Black (aOR 0.53, 0.47–0.60) and Indian (aOR 0.77, 0.66–0.91), compared with White; and have a comorbid condition (aOR 0.60, 0.55–0.67).
> For multivariable analysis, after adjusting for weekly COVID-19 hospital admissions, there was a 31% increased risk of in-hospital mortality in the second wave (aOR 1.31, 95% CI 1.28–1.35). In-hospital case-fatality risk increased from 17.7% in weeks of low admission (<3500 admissions) to 26.9% in weeks of very high admission (>8000 admissions; aOR 1.24, 1.17–1.32).
Conclusions
In South Africa, the second wave was associated with higher incidence of COVID-19, more rapid increase in admissions to hospital, and increased in-hospital mortality. Part of the increase in mortality of patients admitted to hospital could be related to the new Beta lineage. |
| **Lancet Rheumatol.** | **The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study** | Mahil S.K., et al. UK [gotopaper](#) | Vaccines - Immunisation | **Aim:** to evaluate humoral and cellular immune responses to COVID-19 vaccine BNT162b2 in patients taking methotrexate and targeted biological therapies. Given the roll-out of extended interval vaccination programmes to maximise population coverage, we present findings after the first dose.
- Cohort of patients with psoriasis and receiving methotrexate or targeted biological monotherapy ([TNF inhibitors, IL-17 inhibitors, or IL-23 inhibitors]).
- Controls: volunteers without psoriasis and receiving vaccine.
Primary outcomes: neutralising antibody responses to wild-type SARS-CoV-2, and spike-specific T-cell responses (including interferon-γ, IL-2, and IL-21) 28 days after vaccination.
Results
> Between Jan 14–April 4, 2021, 84 patients with psoriasis (17 on methotrexate, 27 on TNF inhibitors, 15 on IL-17 inhibitors, and 25 on IL-23 inhibitors) and 17 healthy controls were included. The study population had a median age of 43 years (IQR 31–52), with 56 (55%) males, 45 (45%) females, and 85 (84%) participants of White ethnicity.
> Seroconversion rates were lower in patients receiving immunosuppressants (60 (78%; 95% CI 67–87) of 77) than in controls (17 [100%; 80–100] of 17), with the lowest rate in those receiving methotrexate (seven [47%; 21–73] of 15).
> Neutralising activity against wild-type SARS-CoV-2 was significantly lower in patients receiving methotrexate (median 50% inhibitory dilution 129 [IQR 40–236]) than in controls (317 [213–487]; p=0.0032), but was preserved in those receiving targeted biologics (269[141–418]).
> Neutralising titres against the B.1.1.7 variant were similarly low in all participants.
> Cellular immune responses were induced in all groups, and were not attenuated in patients receiving methotrexate or targeted biologics compared with controls.
Conclusions
Functional humoral immunity to a single dose of BNT162b2 is impaired by methotrexate but not by targeted biologics, whereas cellular responses are preserved. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet 08JUL2021 | Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey | Tanriover M.D., et al. | Vaccines | Interim efficacy and safety results of a phase 3 clinical trial of CoronaVac, an inactivated whole-virion SARS-CoV-2 vaccine, in Turkey.
- Double-blind, randomised, placebo-controlled phase 3 trial on volunteers aged 18–59 years with no history of COVID-19.
- The K1 cohort consisted of health-care workers (randomised in a 1:1 ratio), and other individuals were also recruited into the K2 cohort (randomised in a 2:1 ratio).
- The study vaccine was 3 μg inactivated SARS-CoV-2 virion adsorbed to aluminium hydroxide in a 0.5 mL aqueous suspension. Participants received either vaccine or placebo intramuscularly on days 0 and 14.
Primary efficacy outcome: prevention of PCR-confirmed symptomatic COVID-19 at least 14 days after the second dose. |
Aim: to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity through three genome-wide association meta-analyses comprised of up to 49,562 COVID-19 patients from 46 studies across 19 countries.
> We reported 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19.
> Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases. They also represent potentially actionable mechanisms in response to infection.
> Mendelian Randomization analyses support a causal role for smoking and body mass index for severe COVID-19 although not for type II diabetes.
The rapid identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetic researchers coming together to prioritize sharing of data, results, resources and analytical frameworks. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Nature 08JUL2021** | Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization | Planas D., et al. France [gotopaper](#) | Variants | **Background**: The B.1.617 lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), harbouring diverse Spike mutations in the N-terminal domain (NTD) and the receptor binding domain (RBD) which may increase their immune evasion potential.

Aim: to study the isolate of an infectious Delta (B.1.617.2) strain from a traveller returning from India, examining its sensitivity to monoclonal antibodies (mAbs) and to antibodies present in sera from COVID-19 convalescent individuals or vaccine recipients.

Results
> Variant Delta was resistant to neutralization by some anti-NTD and anti-RBD mAbs including Bamlanivimab, which were impaired in binding to the Spike
> Sera from convalescent patients collected up to 12 months post symptoms were 4-fold less potent against variant Delta, relative to variant Alpha (B.1.1.7).
> Sera from individuals having received one dose of Pfizer or AstraZeneca vaccines barely inhibited variant Delta. Administration of two doses generated a neutralizing response in 95% of individuals, with titers 3-to-5-fold lower against Delta than Alpha.

Variant Delta spread is associated with an escape to antibodies targeting non-RBD and RBD Spike epitopes. |
| NEJM 07JUL2021 | Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile | Jara A., et al. Chile [gotopaper](#) | Vaccines - Immunisation | **Estimation of CoronaVac (inactivated SARS-CoV-2 vaccine) efficacy preventing Covid-19 and related hospitalization, admission to the intensive care unit (ICU), and death, in mass vaccination campaign in Chile**

> The study was conducted from February 2 to May 1, 2021. The cohort included approximately 10.2 million persons.
> Among persons who were fully immunized, the adjusted vaccine effectiveness was 65.9% (95% confidence interval [CI], 65.2 to 66.6) for the prevention of Covid-19 and 87.5% (95% CI, 86.7 to 88.2) for the prevention of hospitalization, 90.3% (95% CI, 89.1 to 91.4) for the prevention of ICU admission, and 86.3% (95% CI, 84.5 to 87.9) for the prevention of Covid-19-related death.

These results suggest that the inactivated SARS-CoV-2 vaccine effectively prevented Covid-19, including severe disease and death. |

> Hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19.
> Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected.
> Antigen presenting machinery expression is also reduced in critical disease.
> Neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps.

These findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Infect Dis 05JUL2021 | Persistent symptoms in adult patients one year after COVID-19: a prospective cohort study | Seessle J., et al. Germany [gotopaper](#) | Long Covid | **Aim:** to better understand the long-term course and etiology of long term symptoms in a cohort of COVID-19 patients (n=96, 32.3% hospitalised, 55.2% females) followed up to 12 month after symptom onset.
Results
> At month 12, only 22.9% of patients were completely free of symptoms.
> The most frequent symptoms were reduced exercise capacity (56.3%), fatigue (53.1%), dyspnoea (37.5%), concentration problems (39.6%), problems finding words (32.3%), and sleeping problems (26.0%).
> Females showed significantly more neurocognitive symptoms than males.
> Antinuclear antibodies (ANA) titres were ≥1:160 in 43.6% of patients at 12 months post COVID-19 symptom onset, and neurocognitive symptom frequency was significantly higher in the group with an ANA titre ≥1:160 compared to <1:160.
> Compared to patients without symptoms, patients with at least one long COVID symptom at 12 months did not differ significantly in their SARS-CoV-2-antibody levels, but had a significantly reduced physical and mental life quality.
Conclusions
Neurocognitive long COVID symptoms can persist at least for one year after COVID-19 symptom onset. Several neurocognitive symptoms were associated with ANA titre elevations, which may indicate autoimmunity as cofactor in aetiology of long COVID. |
| Lancet Respir Med. 02JUL2021 | BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers | Lustig Y., et al. Israel [gotopaper](#) | Vaccines - Immunisation | **Aim:** to assess the early antibody responses and antibody kinetics after each BNT162b2 vaccine dose in health-care workers of different ages and sexes, and with different comorbidities.
- Prospective, single-centre, longitudinal cohort study
- Participants were followed up weekly for 5 weeks after the first vaccine dose; a second dose was given at week 3.
Results
> Between Dec 19, 2020, and Jan 30, 2021, 4026 serum samples from 2607 participants were obtained. 342 individuals were included in the enriched comorbidities subgroup.
> The first vaccine dose elicited positive IgG and neutralising antibody responses at week 3 in 707 (88·0%) of 803 individuals, and 264 (71·0%) of 372 individuals, respectively, which were rapidly increased at week 4 (ie, 1 week after the second vaccine dose) in 1011 (98·4%) of 1027 and 357 (96·5%) of 370 individuals, respectively.
> Over 4 weeks of follow-up after vaccination, a high correlation (r=0·92) was detected between IgG against the receptor-binding domain and neutralising antibody titres.
> First-dose induced IgG response was significantly lower in individuals aged 66 years and older (ratio of means 0·25, 95% CI 0·19–0·31) and immunosuppressed individuals (0·21, 0·14–0·31) compared with individuals aged 18·00–45·99 years and individuals with no immunosuppression, respectively. This disparity was partly abrogated following the second dose.
> Overall, endpoint regression analysis showed that lower antibody concentrations were consistently associated with male sex (ratio of means 0·84, 95% CI 0·80–0·89), older age (ie, ≥66 years; 0·64, 0·58–0·71), immunosuppression (0·44, 0·33–0·58), and other specific comorbidities: diabetes (0·88, 0·79–0·98), hypertension (0·90, 0·82–0·98), heart disease (0·86, 0·73–1·00), and autoimmune diseases (0·82, 0·73–0·92).
Conclusions
BNT162b2 vaccine induces a robust and rapid antibody response. The second vaccine dose is particularly important for older and immunosuppressed individuals, highlighting the need for timely second vaccinations and potentially a revaluation of the long gap between doses in some countries. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants</td>
<td>Wang L., et al.</td>
<td>Therapeutics</td>
<td>The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA gotopaper</td>
<td></td>
<td>> We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526 and B.1.617 VOCs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Two antibodies are ultrapotent, with sub-nanomolar neutralization titers (IC50 0.3 to 11.1 ng/mL; IC80 1.5 to 34.5 ng/mL).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and how these enable neutralisation of escaping mutants.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> We show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.</td>
</tr>
<tr>
<td>Nature Commun.</td>
<td>SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells</td>
<td>Jung J.H., et al.</td>
<td>Immunology</td>
<td>Aim: to evaluate SARS-CoV-2-specific CD4+ and CD8+ T cell responses in COVID-19 convalescent patients up to 317 days post-symptom onset (DPSO) through ex vivo assays.</td>
</tr>
<tr>
<td>30JUN2021</td>
<td></td>
<td>Republic of Korea gotopaper</td>
<td></td>
<td>> Memory T cell responses are maintained during the study period regardless of the severity of COVID-19. Sustained polyfunctionality and proliferation capacity of SARS-CoV-2-specific T cells was observed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Among SARS-CoV-2-specific CD4+ and CD8+ T cells detected by activation-induced markers, the proportion of stem cell-like memory T (TSCM) cells is increased, peaking at approximately 120 DPSO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Development of TSCM cells is confirmed by SARS-CoV-2-specific MHC-I multimer staining.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Considering the self-renewal capacity and multipotency of TSCM cells, our data suggest that SARS-CoV-2-specific T cells are long-lasting after recovery from COVID-19.</td>
</tr>
<tr>
<td>PNAS</td>
<td>Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy</td>
<td>Wang Y., et al.</td>
<td>Vaccines</td>
<td>Aim: to describe COVI-VAC, the only live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine currently in clinical development.</td>
</tr>
<tr>
<td>30JUN2021</td>
<td></td>
<td>USA gotopaper</td>
<td></td>
<td>> COVI-VAC was developed by recoding a segment of the viral spike protein with synonymous suboptimal codon pairs (codon-pair deoptimization), introducing 283 silent (point) mutations. Furin cleavage site within the spike protein was deleted from the viral genome for added safety. Except for the furin cleavage site deletion, the COVI-VAC and parental SARS-CoV-2 amino acid sequences are identical.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> COVI-VAC was temperature sensitive in vitro yet grew robustly (>107 plaque forming units/mL) at the permissive temperature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Tissue viral loads were consistently lower, lung pathology milder, and weight loss reduced in Syrian golden hamsters (Mesocricetus auratus) vaccinated intranasally with COVI-VAC compared to those inoculated with wild-type (WT) virus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> COVI-VAC inoculation generated spike IgG antibody levels and plaque reduction neutralization titers similar to those in hamsters inoculated with WT virus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Upon challenge with WT virus, COVI-VAC vaccination reduced lung challenge viral titers, resulted in undetectable virus in the brain, and protected hamsters from almost all SARS-CoV-2–associated weight loss.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Highly attenuated COVI-VAC is protective at a single intranasal dose in a relevant in vivo model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>These results, coupled with its large-scale manufacturing potential, supports COVI-VAC potential use in mass vaccination programs.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NEJM 30JUN2021</td>
<td>Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines</td>
<td>Thompson M.G., et al. USA gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions.</td>
</tr>
<tr>
<td>NEJM 30JUN2021</td>
<td>Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine</td>
<td>Heath P.T., et al. UK gotopaper</td>
<td>Vaccines</td>
<td>NVX-CoV2373 vaccine (Novavax) is a recombinant nanoparticle vaccine against SARS-CoV-2 that contains the full-length spike glycoprotein of the prototype strain plus Matrix-M adjuvant</td>
</tr>
</tbody>
</table>

Methods

> Prospective cohort study. 3975 HCW, first responders, and other essential and frontline workers.

> Weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative RT-PCR analysis.

Findings

> SARS-CoV-2 was detected in 204 participants (5%)

> - 5 were fully vaccinated (≥14 days after dose 2),

> - 11 partially vaccinated (≥14 days after dose and <14 days after dose 2),

> - 156 unvaccinated;

> 32 participants with indeterminate vaccination status were excluded.

> Adjusted vaccine effectiveness was 91% with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination.

> Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants.

> The risk of febrile symptoms was 58% lower and the duration of illness was shorter, with 2.3 fewer days spent sick in bed.

Conclusions

Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination.

Methods

> Phase 3, randomized, observer-blinded, placebo-controlled trial

> 33 sites in the United Kingdom. Adults between the ages of 18 and 84 years in a 1:1 ratio to receive two intramuscular 5-μg doses of NVX-CoV2373 or placebo administered 21 days apart.

Efficacy end point: virologically confirmed mild, moderate, or severe SARS-CoV-2 infection with an onset at least 7 days after the second injection in participants who were serologically negative at baseline.

Findings

> 14,039 participants included

> - 27.9% were 65 years of age or older

> - 44.6% had coexisting illnesses.

> Infections reported in 10 participants in the vaccine group and in 96 in the placebo group, with a symptom onset of at least 7 days after the second injection in participants who were serologically negative at baseline.

> Efficacy of 89.7% (95% CI, 80.2 to 94.6).

> No hospitalizations or deaths reported among the 10 cases in the vaccine group.

> Five cases of severe infection reported, all of which were in the placebo group.

> Efficacy of 86.3% (95% CI, 71.3 to 93.5) against the B.1.1.7 (or alpha) variant and 96.4% (95% CI, 73.8 to 99.5) against non-B.1.1.7 variants.

> Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups.

Conclusions

A two-dose regimen of the NVX-CoV2373 vaccine administered to adult participants conferred 89.7% protection against SARS-CoV-2 infection and showed high efficacy against the B.1.1.7 variant.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 30JUN2021 | SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells | Jung J.H., et al. Republic of Korea gotopaper | Immunology | **Aim:** to evaluate SARS-CoV-2-specific CD4+ and CD8+ T cell responses in COVID-19 convalescent patients up to 317 days post-symptom onset (DPSO) and find that memory T cell responses are maintained during the study period regardless of the severity of COVID-19.

Methods:
- Cohort of 101 individuals with SARS-CoV-2 infection. The peak disease severity was evaluated according to the NIH severity of illness categories: asymptomatic (n = 7), mild (n = 46), moderate (n = 25), severe (n = 14), and critical (n = 9).
- Whole blood samples were obtained longitudinally (2–4 time points) from 56 patients or at a single time point from 45 patients. Whole blood was collected 1–317 days post-symptom onset (DPSO).

Findings:
- Sera from participants > 80 years old.
- Serum neutralisation and binding IgG/IgA after the first vaccine dose diminished with increasing age, with a marked drop in participants > 80 years old.
- T cells from PBMCs obtained after 200 DPSO exhibiting sustained polyfunctionality and proliferation capacity.
- PD-1 and TIGIT are rarely expressed in SARS-CoV-2-specific TSCM cells, indicating that SARS-CoV-2-specific TSCM cells are not exhausted-like progenitors, but bona fide stem-like memory cells.

SARS-CoV-2-specific memory T cell responses are maintained 10 months after the infection. |
| Nature 30JUN2021 | Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2 | Collier D.A., et al. UK gotopaper | Immunology | Analysis of immune responses following vaccination with mRNA vaccine BNT162b2 in elderly participants and younger health care workers.

> Serum neutralisation and binding IgG/IgA after the first vaccine dose diminished with increasing age, with a marked drop in participants > 80 years old.

> Sera from participants > 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type and were more likely to lack any neutralisation against VOC following the first dose. However, following the second dose, neutralisation against VOC was detectable regardless of age.

> Frequency of SARS-CoV-2 Spike specific B-memory cells was higher in elderly responders versus non-responders after first dose. Elderly participants demonstrated clear reduction in somatic hypermutation of class switched cells.

> SARS-CoV-2 Spike specific T-cell IFNγ and IL-2 responses decreased with increasing age, and both cytokines were secreted primarily by CD4 T cells.

We conclude that the elderly are a high risk population that warrant specific measures to boost vaccine responses, particularly where variants of concern are circulating. |
| Nature Med. 29JUN2021 | Reduction in life expectancy in Brazil after COVID-19 | Castro M. J., et al. USA gotopaper | Public Health / Epidemiology | In this study, we used data on reported total deaths in 2020 and in January–April 2021 to measure and compare the death toll across states

Findings:
- We estimate a decline in 2020 life expectancy at birth (e0) of 1.3 years, a mortality level not seen since 2014.
- The reduction in life expectancy at age 65 (e65) in 2020 was 0.9 years, setting Brazil back to 2012 levels.
- The decline was larger for males, widening by 9.1% the female–male gap in e0. Among states, Amazonas lost 60.4% of the improvements in e0 since 2000.
- In the first 4 months of 2021, COVID-19 deaths represented 107% of the total 2020 figures.
- Assuming that death rates would have been equal to 2019 all-cause rates in the absence of COVID-19, COVID-19 deaths in 2021 have already reduced e0 in 2021 by 1.8 years, which is slightly larger than the reduction estimated for 2020 under similar assumptions. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature 28JUN2021</td>
<td>SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses</td>
<td>Turner J.S., et al. USA gotopaper</td>
<td>Immunology</td>
<td>The dynamics of antibody secreting plasmablasts (PBs) and germinal centre (GC) B cells induced by SARS-CoV-2 mRNA vaccines in humans remain unclear.</td>
</tr>
</tbody>
</table>

Methods
- blood samples collection and demographic, social, medical, and self-reported symptoms information from residents aged 6 months and older over two study visits.
- SARS-CoV-2 antibodies were measured using a highly specific two-antigen ELISA optimized for use in Mali.

Findings
- 94.8% (2533/2672) of participants completed both study visits.
- A total of 31.3% (837/2672) were aged <10 years, 27.6% (737/2672) were aged 10-17 years, and 41.1% (1098/2572) were aged ≥18 years.
- The cumulative SARS-CoV-2 exposure rate was 58.5% (95% CI: 47.5 to 69.4). This varied between sites and was 73.4% in the urban community of Sotuba, 53.2% in the rural town of Bancoumana, and 37.1% in the rural village of Doniéguebougou.
- Study site and increased age were associated with serostatus at both study visits.
- Minimal difference in reported symptoms based on serostatus.

Conclusion
The true extent of SARS-CoV-2 exposure in Mali is greater than previously reported and may now approach hypothetical ‘herd immunity’ in urban areas. The epidemiology of the pandemic in the region may be primarily subclinical and within background illness rates.

Aim: to examine antigen-specific B cell responses in peripheral blood (n=41) and draining lymph nodes (LNs) in 14 individuals who received two doses of BNT162b2.

- Circulating IgG- and IgA-secreting PBs targeting the S protein peaked one week after the second immunization then declined, becoming undetectable three weeks later.
- These PB responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals previously infected with SARS-CoV-2, who produced the most robust serologic responses.
- By examining fine needle aspirates (FNAs) of draining axillary LNs, we identified S-binding GC B cells and PBs were sustained in these draining LNs for at least twelve weeks after the booster immunization.
- S-binding GC B cell-derived monoclonal antibodies predominantly targeted the RBD of the S protein, with fewer clones binding to the NTD or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1.
- The latter cross-reactive B cell clones had higher levels of somatic hypermutation compared to those that only recognized SARS-CoV-2 S protein, suggesting a memory B cell origin.

Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent GC B cell response, enabling the generation of robust humoral immunity.
Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial

Han B., et al.
China
gotopaper

Methods
> Double-blind, randomised, controlled, phase 1/2 clinical trial.
> Healthy children and adolescents aged 3–17 years old.
> Vaccine (0.5 mL aluminum hydroxide adjuvant) or aluminum hydroxide only (alum only, control). Two doses (day 0 and day 28).
> Dose-escalation in two blocks (1.5 μg or 3.0 μg per injection).

Primary safety endpoint: adverse reactions within 28 days after each injection in all participants who received at least one dose.

Primary immunogenicity endpoint: seroconversion rate of neutralising antibody to live SARS-CoV-2 at 28 days after the second injection.

Findings
> 550 participants received at least one dose of vaccine or alum only (n=71 for phase 1 and n=479 for phase 2; safety population).
> In the combined safety profile of phase 1 and phase 2, any adverse reactions within 28 days after injection occurred in 56 (26%) of 219 participants in the 1.5 μg group, 63 (29%) of 217 in the 3.0 μg group, and 27 (24%) of 114 in the alum-only group, without significant difference (p=0.55).
> In phase 1, seroconversion of neutralising antibody after the second dose was observed in 27 of 27 participants (100.0% [95% CI 87.2–100.0]) in the 1.5 μg group and 26 of 26 participants (100.0% [86.8–100.0]) in the 3.0 μg group, with the geometric mean titres of 55.0 (95% CI 38.9–77.9) and 117.4 (87.8–157.0).
> In phase 2, seroconversion was seen in 180 of 186 participants (96.8% [93.1–98.8]) in the 1.5 μg group and 180 of 180 participants (100.0% [98.0–100.0]) in the 3.0 μg group, with the geometric mean titres of 86.4 (73.9–101.0) and 142.2 (124.7–162.1). There were no detectable antibody responses in the alum-only groups.

Conclusion
CoronaVac was well tolerated and safe and induced humoral responses in children and adolescents aged 3–17 years. Neutralising antibody titres induced by the 3.0 μg dose were higher than those of the 1.5 μg dose. The results support the use of 3.0 μg dose with a two-immunisation schedule for further studies in this population.

Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial

Borobia A.M., et al.
Spain
gotopaper

Aim: to assess the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK).

Methods:
Phase 2, open-label, randomised, controlled trial on adults aged 18–60 years, vaccinated with a single dose of ChAdOx1-S 8–12 weeks before screening, and no history of SARS-CoV-2 infection.

The primary outcome was 14-day immunogenicity, measured by immunossays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years; 382 [57%] women and 294 [43%] men).

Findings:
> In the intervention group, geometric mean titres of RBD antibodies increased from 71.46 BAU/mL at baseline to 775.68 BAU/mL at D 14.
> IgG against trimeric spike protein increased from 98.40 BAU/mL to 3684.87 BAU/mL.
> The interventional control ratio was 77.69 for RBD protein and 36.41 for trimeric spike protein IgG.
> Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported.

BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Between 2010 and 2018, the gap in life expectancy between the US and the peer country average increased from 1.88 years (78.66 v 80.54 years, respectively) to 3.05 years (78.74 v 81.78 years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Between 2018 and 2020, life expectancy in the US decreased by 1.87 years (to 76.87 years), 8.5 times the average decrease in peer countries (0.22 years), widening the gap to 4.69 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Life expectancy in the US decreased disproportionately among racial and ethnic minority groups between 2018 and 2020, declining by 3.88, 3.25, and 1.36 years in Hispanic, non-Hispanic Black, and non-Hispanic White populations, respectively.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> In Hispanic and non-Hispanic Black populations, reductions in life expectancy were average 18 and 15 times the average in peer countries, respectively.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Progress since 2010 in reducing the gap in life expectancy in the US between Black and White people was erased in 2018-20; life expectancy in Black men reached its lowest level since 1998 (67.73 years), and the longstanding Hispanic life expectancy advantage almost disappeared.</td>
</tr>
<tr>
<td>Clin Infect Dis. 24JUN2021</td>
<td>Neutralizing Monoclonal Antibody Treatment Reduces Hospitalization for Mild and Moderate COVID-19: A Real-World Experience</td>
<td>Verderese J.P., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>The US had a much larger decrease in life expectancy between 2018 and 2020 than other high income nations, with pronounced losses among the Hispanic and non-Hispanic Black populations. Health disadvantage, high death rates in 2020 and inequality of minority groups are likely the products of policy choices and systemic racism.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aim: to assess the impact of NmAb treatment given in the outpatient clinical practice setting on hospital utilization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 707 confirmed COVID-19 patients received NmAb and 1709 historic COVID-19 controls were included; 553 (78%) received BAM, 154 (22%) received REGN-COV2. Post-index hospitalization rates were compared.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Patients receiving NmAb infusion had significantly lower hospitalization rate (5.8% vs. 11.4%), a shorter length of stay if hospitalized (mean 5.2 days vs. 7.4 days), and fewer ED visits within 30 days post-index (8.1% vs. 12.3%) than controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Hospitalization-free survival was significantly longer in NmAb patients compared to controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> There was a trend towards a lower hospitalization rate among patients who received NmAb within 2-4 days after symptom onset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> In multivariate analysis, having received a NmAb transfusion was independently associated with a lower risk of hospitalization after adjustment for age, sex, BMI and referral source: adjusted hazard ratio (95% CI) = 0.54 (0.38 – 0.79), p=0.0012.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Overall mortality was not different between the two groups.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NmAb treatment reduced hospital utilization especially when received within a few days of symptom onset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 143 patients and 25 HCWs included, 45% liver, 41.2% kidney and 18.1% (n=26) heart transplant recipients. Median time from transplantation to the first BNT162b2 injection was 45.0 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Seroconversion rate after the second dose was significantly lower among SOT recipients than among HCWs (28.6% vs. 100.0%, p<0.0001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Positive anti-S1 IgG among all SOT-recipients with previous COVID19.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 4 patients developed severe COVID-19 between and after the two doses and one with negative anti-S1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Vaccine response seems to be dramatically low in kidney and heart transplant-recipients (16.6% and 34.8%). Kidney transplantation and time from transplantation to the first vaccination <2 years were risk factors related to a negative serological response (OR: 4.01 and 2.87).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poor humoral response to BNT162b2 in vaccine SOT-recipients, and defined kidney transplant-recipients, transplantation time and diabetes were risk factors for negative response to the vaccine.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Lancet Infect Dis. 23JUN2021 | Vaccine effectiveness of the first dose of ChAdOx1 nCoV-19 and BNT162b2 against SARS-CoV-2 infection in residents of long-term care facilities in England (VIVALDI): a prospective cohort study | Shrotri M., et al. UK gotopaper | Vaccines - Immunisation | **Aim:** to investigate the protective effect of the first dose of ChAdOx1 nCoV-19 and BNT162b2 in residents of long-term care facilities in terms of PCR-confirmed SARS-CoV-2 infection over time since vaccination.
Results
> 10 412 care home residents aged 65 years and older from 310 LTCFs were included. Median participant age was 86 years (IQR 80–91), 7247 (69-6%) of 10 412 residents were female, and 1155 residents (11-1%) had evidence of previous SARS-CoV-2 infection. 9160 (88-0%) residents received at least one vaccine dose, of whom 6138 (67-0%) received ChAdOx1 and 3022 (33-0%) received BNT162b2.
> Between Dec 8, 2020, and March 15, 2021, there were 36 352 PCR results in 670 628 person-days, and 1335 PCR-positive infections (713 in unvaccinated residents and 612 in vaccinated residents) were included.
> Adjusted hazard ratios (HRs) for PCR-positive infection relative to unvaccinated residents declined from 28 days after the first vaccine dose to 0·44 (95% CI 0·24–0·81) at 28–34 days and 0·38 (0·19–0·77) at 35–48 days.
> Similar effect sizes were seen for ChAdOx1 (adjusted HR 0·32, 95% CI 0·15–0·66) and BNT162b2 (0·35, 0·17–0·71) vaccines at 35–48 days.
> Mean PCR Ct values were higher for infections that occurred at least 28 days after vaccination than for those occurring before vaccination (31·3 [SD 8·7] in 107 PCR-positive tests vs 26·6 [6·6] in 552 PCR-positive tests; p<0·0001).
Single-dose vaccination with BNT162b2 and ChAdOx1 vaccines provides substantial protection against infection in older adults >65yo from 4–7 weeks after vaccination and might reduce SARS-CoV-2 transmission. |
| Lancet Infect Dis. 23JUN2021 | Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: a test-negative, case-control study | Hyams C., et al. UK gotopaper | Vaccines - Immunisation | **Aim:** to evaluate effectiveness of one dose of ChAdOx1 nCoV-19 and BNT162b2 COVID-19 vaccine in reducing COVID-19-related admissions to hospital in people > 80 yo.
> Between Dec 18, 2020, and Feb 26, 2021, 466 adults were eligible (144 test-positive and 322 test-negative).
> 18 (13%) of 135 people with SARS-CoV-2 infection and 90 (34%) of 269 controls received one dose of BNT162b2.
> The adjusted vaccine effectiveness was 71·4% (95% CI 46·5–90·6). Nine (25%) of 36 people with COVID-19 infection and 53 (59%) of 90 controls received one dose of ChAdOx1 nCoV-19. The adjusted vaccine effectiveness was 80·4% (95% CI 36·4–94·5). When BNT162b2 effectiveness analysis was restricted to the period covered by ChAdOx1 nCoV-19, the estimate was 79·3% (95% CI 47·0–92·5).
One dose of either BNT162b2 or ChAdOx1 nCoV-19 resulted in substantial risk reductions of COVID-19-related hospitalisation in people aged > 80 years. |
Findings
> At 6 months, 61% (189/312) of all patients had persistent symptoms, which were independently associated with severity of initial illness, increased convalescent antibody titers and pre-existing chronic lung disease
> We found that 52% (32/61) of home-isolated young adults, aged 16–30 years, had symptoms at 6 months, including loss of taste and/or smell (28%, 17/61), fatigue (21%, 13/61), dyspnea (13%, 8/61), impaired concentration (13%, 8/61) and memory problems (11%, 7/61).
Our findings that young, home-isolated adults with mild COVID-19 are at risk of long-lasting dyspnea and cognitive symptoms highlight the importance of infection control measures, such as vaccination. |

<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared with WA1/2020 but elicited CD8 and CD4 T cell responses that were comparable against WA1/2020, B.1.351, B.1.1.7, P.1, and CAL.20C variants.
> B.1.351 infection of sham control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection.
> Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated animals following B.1.351 challenge.
These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. |
| Science 22JUN2021 | Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2 | Tummino T.A., et al. France / USA [gotopaper](#) | Therapeutics | Hypothesis that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs.
Testing of 23 cationic amphiphilic drugs tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials:
> Phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral.
> Phospholipidosis depends on the physicochemical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a toxic confound in early drug discovery.
Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential. |
| Lancet Infect Dis 22JUN21 | Risk of hospitalisation associated with infection with SARS-CoV-2 lineage B.1.1.7 in Denmark: an observational cohort study | Bager P., et al. Denmark [gotopaper](#) | Public Health / Epidemiology | Aim: to assess the risk of hospitalisation associated with B.1.1.7 using individual-level data from national registers in Denmark
Methods:
Observational cohort study of all SARS-CoV-2-positive cases confirmed by RT-PCR, sampled between Jan 1 and March 24, 2021, with 14 days of follow-up for COVID-19 hospitalisation.
Among all cases, COVID-19 hospitalisation was defined as first admission lasting longer than 12 h within 14 days of a sample with a positive RT-PCR result.
Findings:
> Between Jan 1 and March 24, 2021, 50,958 individuals with a positive SARS-CoV-2 test and at least 14 days of follow-up for hospitalisation were identified.
> 30,572 individuals (60·0%) had genome data, of whom 10,544 (34·5%) were infected with B.1.1.7, 1944 (6·4%) individuals had a COVID-19 hospitalisation and of these, 571 (29·4%) had a B.1.1.7 infection and 1373 (70·6%) had an infection with other SARS-CoV-2 lineages.
> Although the overall number of hospitalisations decreased during the study period, the proportion of individuals infected with B.1.1.7 increased from 3·5% to 92·1% per week.
> B.1.1.7 was associated with a crude RR of hospital admission of 0·79 (95% CI 0·72–0·87; p<0·0001) and an adjusted RR of 1·42 (95% CI 1·25–1·60; p<0·0001).
> The adjusted RR was increased in all strata of age and calendar period—the two covariates with the largest contribution to confounding of the crude RR.
Infection with SARS-CoV-2 lineage B.1.1.7 was associated with an increased risk of hospitalisation compared with that of other lineages in an analysis adjusted for covariates. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet Infect Dis. 22JUN2021</td>
<td>Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study</td>
<td>Patone M., et al. UK gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Aim: to estimate the risk of critical care admission, mortality in patients who are critically ill, and overall mortality associated with lineage B.1.1.7 compared with non-B.1.1.7. Also, to compare clinical outcomes between the two groups. Methods: Observational cohort study, the authors linked large primary care (QResearch), national critical care (Intensive Care National Audit & Research Centre Case Mix Programme), and national COVID-19 testing (Public Health England) databases. SARS-CoV-2 positive samples with S-gene molecular diagnostic assay failure (SGTF) as a proxy for the presence of lineage B.1.1.7 were used. Two cohorts were extracted from the data: the primary care cohort, comprising patients in primary care with a positive community COVID-19 test and known SGTF status; and the critical care cohort, comprising patients admitted for critical care with a positive community COVID-19 test and known SGTF status. Findings: >The primary care cohort included 198,420 patients with SARS-CoV-2 infection. Of these, 117,926 (59.4%) had lineage B.1.1.7, 836 (0.4%) were admitted to CCU, and 899 (0.4%) died within 28 days. >The critical care cohort included 4272 patients admitted to CCU. Of these, 2685 (62.8%) had lineage B.1.1.7 and 662 (15.5%) died at the end of critical care. >In the primary care cohort, we estimated adjusted hazard ratios (HRs) of 2.15 (95% CI 1.75–2.65) for CCU admission and 1.65 (1.36–2.01) for 28-day mortality for patients with lineage B.1.1.7 compared with the non-B.1.1.7 group. >The adjusted HR for mortality in critical care, estimated with the critical care cohort, was 0.91 (0.76–1.09) for patients with lineage B.1.1.7 compared with those with non-B.1.1.7 infection. Patients with lineage B.1.1.7 were at increased risk of CCU admission and 28-day mortality compared with patients with non-B.1.1.7 SARS-CoV-2. For patients receiving critical care, mortality appeared to be independent of virus strain.</td>
</tr>
<tr>
<td>Science 22JUN2021</td>
<td>Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice</td>
<td>Martinez, D.R, et al. USA gotopaper</td>
<td>Vaccines</td>
<td>The emergence of SARS-CoV in 2003 and SARS-CoV-2 in 2019 highlights the need to develop universal vaccination strategies against the broader Sarbecovirus subgenus. Findings: >Chimeric spikes encoding NTD, RBD, and S2 domains into “bivalent” and “trivalent” vaccine immunogens --> protection against challenge from SARS-CoV, SARS-CoV-2, SARS-CoV-2 B.1.351, bat CoV (Bt-CoV) RsHCo14, and a heterologous Bt-CoV WIV-1 in vulnerable aged mice. >Chimeric spike mRNAs induced high levels of broadly protective neutralizing antibodies against high-risk Sarbecoviruses. >SARS-CoV-2 mRNA vaccination not only showed a marked reduction in neutralizing titers against heterologous Sarbecoviruses, but SARS-CoV and WIV-1 challenge in mice resulted in breakthrough infections. >Chimeric spike mRNA vaccines efficiently neutralized D614G, mink cluster five, and the UK B.1.1.7., and South African B.1.351 variants of concern. Conclusions: >Multiplexed-chimeric spikes can prevent SARS-like zoonotic coronavirus infections with pandemic potential.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Science Transl Med. 22JUN2021 | **Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England** | Knock E.S., et al. UK gotopaper | Public Health / Epidemiology | **Aim:** Propose a model of SARS-CoV-2 transmission to reproduce the first two waves of the epidemic in England and fit it using multiple surveillance data streams
Methods: > Age-structured stochastic compartmental SEIR-like transmission model of SARS-CoV-2, representing care homes, hospital clinical pathways, and the wider community > Bayesian approach integrating multiple data streams to estimate model parameters and to reconstruct regional epidemics > Data of daily recorded deaths, PCR testing, hospital admissions, hospital bed occupancy, individual patient outcomes, contact surveys, and serological surveys > Examination of counterfactual epidemic scenarios, varying the date and duration of the first national lockdown and the effectiveness of restricting care home visits, to quantify the impact on mortality
Findings: > Among the control measures implemented, only national lockdown brought the reproduction number below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900–38,400) > The infection fatality ratio decreased from 1.00% (95%CrI: 0.85–1.21%) to 0.79% (95%CrI: 0.63–0.99%), suggesting improved clinical care > The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7–35.2%) than those residing in the community (7.9%, 95%CrI: 5.9–10.3%)
Conclusions: > The model integrates multiple data sources and provides a balanced overview of transmission, hospitalisation, and mortality patterns of SARS-CoV-2 in the first and second waves in England (up to 2nd December) > This study suggests that any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission |
| JAMA Pediatr. 21JUN2021 | **Association Between Race and COVID-19 Outcomes Among 2.6 Million Children in England** | Saatci D., et al. UK gotopaper | Public Health / Epidemiology | **Aim:** to investigate the association between race and childhood COVID-19 testing and hospital outcomes.
Primary outcome: hospital admission with confirmed COVID-19.
Secondary outcomes: SARS-CoV-2–positive test result and any hospital attendance with confirmed COVID-19 and intensive care admission.
Results: > Of 2,576,353 children (mean [SD] age, 9.23 [5.24] years; 48.8% female), 410,726 (15.9%) were tested for SARS-CoV-2 and 26,322 (6.4%) tested positive. > A total of 1,853 children (0.07%) with confirmed COVID-19 attended hospital, 343 (0.01%) were admitted to the hospital, and 73 (0.002%) required intensive care. > Testing varied across race. White children had the highest proportion of SARS-CoV-2 tests (233,701/1,311,041 [17.1%]), whereas Asian children (33,213/243,545 [13.6%]), Black children (7727/93,620 [8.3%]), and children of mixed or other races (18,971/147,529 [12.9%]) had lower proportions. > Compared with White children, Asian children were more likely to have COVID-19 hospital admissions (adjusted odds ratio [OR], 1.62; 95% CI, 1.12–2.36), whereas Black children (adjusted OR, 1.44; 95% CI, 0.90–2.31) and children of mixed or other races (adjusted OR, 1.40; 95% CI, 0.93–2.10) had comparable hospital admissions. > Asian children were more likely to be admitted to intensive care (adjusted OR, 2.11; 95% CI, 1.07–4.34), and Black children (adjusted OR, 2.31; 95% CI, 1.08–4.94) and children of mixed or other races (adjusted OR, 2.14; 95% CI, 1.25–3.65) had longer hospital admissions (≥36 hours).
In this large population-based study, several race-specific disparities were observed in severe COVID-19 outcomes. However, ascertainment bias and residual confounding should be considered before drawing conclusions. |
Nature 21JUN2021

Title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains
Authors: Chen, R.E., et al.
Link: [gotopaper](#)
Field of expertise: Therapeutics

- **Key facts**: Rapidly-emerging variants jeopardize antibody-based countermeasures against SARS-CoV-2. While cell culture experiments have demonstrated loss of potency of several anti-spike neutralizing antibodies against SARS-CoV-2 variant strains, the in vivo significance of these results remains uncertain.

Methods

- Panel of infectious SARS-CoV-2 strains including B.1.1.7, B.1.429, B.1.617.1 and B.1.526 isolates, as well as a SARS-CoV-2 strain with a D614G substitution, a N501Y and D614G substitutions and chimeric SARS-CoV-2 strains.
- Panel of (mAbs) corresponding to many in advanced clinical development: 2B04/47D11 (AbbVie), S309/S2E12 (Vir Biotechnology), COV2-2130/COV2-2196 (Vanderbilt University Medical Center with derivatives being evaluated by AstraZeneca), REGN10933/REGN10987 (synthesized based on casirivimab and imdevimab sequences from Regeneron), and LY-CoV555 (synthesized based on bamlanivimab sequences from Lilly).

Findings

- All individual mAbs efficiently neutralized chimeric SARS-CoV-2 strains, and B.1.1.7 strains, and several mAbs. Several mAbs (COV2-2130, COV2-2196, S309, S2E12, and 47D11) B.1.429, and B.1.526 strains.
- Impact of SARS-CoV-2 spike variation on antibody neutralization: REGN10987 or LY-CoV555 respectively show a 10-fold or complete loss in inhibitory activity against the B.1.429 and B.1.617.1.
- Some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1, and B.1.526 viruses with E484 spike protein mutations, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 12952 immunocompetent mice, and hamsters without emergence of resistance. Exceptions were mAb LY-CoV555 and LY-CoV555/LY-CoV016 mono- and combination therapy, which lost all protective activity, and AbbVie 2B04/47D11, which showed partial loss of activity.
- Higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene.

Conclusion

Many but not all combination therapies with neutralizing mAbs should retain efficacy against emerging SARS-CoV-2 variant.

Cell 18JUN2021

Title: In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies
Authors: Li D., et al.
Link: [gotopaper](#)
Field of expertise: Immunology

- **Key facts**: A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated neutralising antibodies (Nabs) against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection.

- Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Neutralizing or infection-enhancing NTD antibodies bound distinct epitopes.
- RBD or NTD antibodies exhibited infection enhancement in vitro: select RBD NAbs demonstrated Fc receptor-y (FcRy)-mediated enhancement of virus infection in vitro, while 5 non-neutralizing NTD antibodies mediated FcR-dependent in vitro infection enhancement.
- However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. 3 of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Cross-reactive RBD neutralizing antibodies were protective—most potent, DH1047.

Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet HIV</td>
<td>Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial</td>
<td>Frater J., et al. UK gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Methods > Single-arm open-label vaccination substudy within the protocol of the larger phase 2/3 trial COV002 Adults aged 18–55 years with HIV on antiretroviral therapy (ART), with undetectable plasma HIV viral loads were enrolled >Prime-boost regimen of ChAdOx1 nCoV-19, with two doses was 4–6 weeks apart. Primary outcomes safety and reactogenicity of the vaccine. Outcomes were compared with an HIV-uninfected group from the main COV002 study within the same age group Findings > 54 participants with HIV (all male, median age 42-5 years [IQR 37-2-49]) enrolled, receiving two doses of ChAdOx1 nCoV-19. > Median CD4 count at enrolment: 694·0 cells/µL [IQR 573-5–859-5]. > No serious adverse events occurred. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (26 [49%] of 53 participants with available data), fatigue (25 [47%]), headache (25 [47%]), malaise (18 [34%]), chills (12 [23%]), muscle ache (19 [36%]), joint pain (five [9%]), and nausea (four [8%]), the frequencies of which were similar to the HIV-negative participants. > Anti-spike IgG responses by ELISA peaked at day 42 (median 1440 ELISA units [EUs; IQR 704–2728]; n=50) and were sustained until day 56 (median 941 EUs [531–1445]; n=49). No correlation between the magnitude of the anti-spike IgG response at day 56 and CD4 cell count (p=0-93) or age (p=0-48). > ELISpot and T-cell proliferative responses peaked at day 14 and 28 after prime dose and were sustained to day 56. > Compared with participants without HIV no difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (p>0-05 for all analyses). Conclusions In this study, ChAdOx1 nCoV-19 was safe and immunogenic in people with HIV, supporting vaccination for those well controlled on ART.</td>
</tr>
<tr>
<td>JAMA Oncol.</td>
<td>Association of Convalescent Plasma Therapy With Survival in Patients With Hematologic Cancers and COVID-19</td>
<td>Thompson M. A., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Is convalescent plasma therapy associated with improved outcomes of hospitalized patients with COVID-19 and hematologic cancer? Findings > In this cohort study of 966 patients with hematologic cancer and COVID-19, after adjustment for potential confounding factors, convalescent plasma treatment was associated with a significantly improved 30-day mortality in the 143 individuals who received it > This association remained significant after propensity score matching These findings suggest a potential survival benefit in the administration of convalescent plasma to patients with hematologic cancers and COVID-19.</td>
</tr>
<tr>
<td>Nature Commun.</td>
<td>Multianalyte serology in home-sampled blood enables an unbiased assessment of the immune response against SARS-CoV-2</td>
<td>Roxhed N., et al. Sweden gotopaper</td>
<td>Diagnostics</td>
<td>We establish a multianalyte and multiplexed approach to reliably profile IgG and IgM levels against several versions of SARS-CoV-2 proteins (S, RBD, N) in home-sampled dried blood spots (DBS) Findings > We analyse DBS collected during spring of 2020 from 878 random and undiagnosed individuals from the population in Stockholm, Sweden, and use classification approaches to estimate an accumulated seroprevalence of 12.5% (95% CI: 10.3%–14.7%). > This includes 5.4% of the samples being IgG+ IgM+ against several SARS-CoV-2 proteins, as well as 2.1% being IgG− IgM+ and 5.0% being IgG+IgM+ for the virus’s protein. > Subjects classified as IgG+ for several SARS-CoV-2 proteins report influenza-like symptoms more frequently than those being IgG+ for only the S protein (OR=6.1;p<0.001) > Among all seropositive cases, 30% are asymptomatic. Our strategy enables an accurate individual-level and multiplexed assessment of antibodies in home-sampled blood, assisting our under-standing about the undiagnosed seroprevalence and diversity of the immune response against the coronavirus.</td>
</tr>
</tbody>
</table>
Clin Infect Dis. 17JUN2021

Post-vaccination SARS-CoV-2 infections and incidence of presumptive B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center

Jacobson K. B., et al.
USA
gotopaper

Vaccines - Variants

Aim: to compare the mutation prevalence among unvaccinated, early post-vaccinated (≤14 days after dose 1), partially vaccinated (positive test >14 days after dose 1 and ≤14 days after dose 2) and fully vaccinated (>14 days after dose 2) post-vaccine SARS-CoV-2 cases (PVSCs).

Methods:
> Demographic and clinical information from PVSCs, defined as healthcare personnel (HCP) with positive SARS-CoV-2 NAAT after receiving ≥1 vaccine dose. Available specimens were tested for L452R, N501Y and E484K mutations by RT-PCR.

Findings:
> From December 2020-April 2021, ≥23,090 HCPs received at least1 dose of an mRNA-based SARS-CoV-2 vaccine, and 660 HCP cases of SARS-CoV-2 occurred of which 189 were PVSCs.
> Among the PVSCs, 114 (60.3%), 49 (25.9%) and 26 (13.8%) were early post-vaccination, partially vaccinated, and fully vaccinated, respectively.
> Of 261 available samples from vaccinated and unvaccinated HCP, 103 (39.5%), including 42 PVSCs (36.5%), had L452R mutation presumed to be B.1.427/B.1.429.
> When adjusted for community prevalence of B.1.427/B.1.429, PVSCs did not have significantly elevated risk for infection with B.1.427/B.1.429 compared with unvaccinated HCP.
> Most PVSCs occurred prior to expected onset of full, vaccine-derived immunity. Presumptive B.1.427/B.1.429 was not more prevalent in post-vaccine cases than in unvaccinated SARS-CoV-2 HCP.

Cell 17JUN2021

Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum

Liu C., et al.
UK
gotopaper

Variants

Here we study the ability of monoclonal antibodies, convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2 and complement this with structural analyses of Fab/RBD complexes and map the antigenic space of current variants.

Findings:
> Neutralization of both viruses is reduced when compared with ancestral Wuhan related strains but there is no evidence of widespread antibody escape as seen with B.1.351.
> However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2 suggesting that individuals previously infected by these variant may be more susceptible to reinfection by B.617.2.

This observation provides important new insight for immunisation policy with future variant vaccines in non-immune populations.

Clin Infect Dis. 16JUN2021

Humoral and cellular immune responses against SARS-CoV-2 variants and human coronaviruses after single BNT162b2 vaccination

Stankov M. V., et al.
UK
gotopaper

Immunology

Aim: to assess humoral and T cell responses against SARS-CoV-2 WT, variants of concern (VOC) and endemic human coronaviruses (hCoV) that were induced after single and double vaccination with BNT162b2 were analysed.

Methods:
Anti-SARS-CoV-2 S IgG and IgA levels were determined in individuals early (mean 8.7 days, range 2 to 14 days) and late (mean 20.6 days, range 17-27 days) after immunization with a single 30 μg dose of BNT162b2 (n=124)

Findings:
> Despite readily detectable IgG against the receptor-binding domain (RBD) of the SARS-CoV-2 S protein at day 14 after a single vaccination, inhibition of SARS-CoV-2 S-driven host cell entry was weak and particularly low for the B.1.351 variant.
> Frequencies of SARS-CoV-2 WT and VOC specific T cells were low in many vaccinees after application of a single dose and influenced by immunity against endemic hCoV.
> The second vaccination significantly boosted T cell frequencies reactive for WT, B.1.1.7 and B.1.351 variants.

These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 16JUN2021 | Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia | Guimarães P.O., et al. Brazil | Therapeutics | **Aim:** to evaluate efficacy and safety of tofacitinib, a Janus kinase inhibitor, in patients who are hospitalized with Covid-19 pneumonia.
Regimens: 10 mg tofacitinib or placebo twice daily for up to 14 days or until hospital discharge.
Primary outcome: occurrence of death or respiratory failure through day 28 (assessment with 8-level ordinal scale. All-cause mortality and safety were also assessed.
Results
> A total of 289 patients underwent randomization at 15 sites in Brazil. Overall, 89.3% of the patients received glucocorticoids during hospitalization.
> The cumulative incidence of death or respiratory failure through day 28 was 18.1% in the tofacitinib group and 29.0% in the placebo group (risk ratio, 0.63; 95%CI, 0.41-0.97; P=0.04).
> Death from any cause through day 28 occurred in 2.8% of the patients in the tofacitinib group and in 5.5% of those in the placebo group (hazard ratio, 0.49; 95% CI, 0.15-1.63).
> The proportional odds of having a worse score on the 8-level ordinal scale with tofacitinib, as compared with placebo, was 0.60 (95% CI, 0.36–1.00) at day 14 and 0.54 (95% CI, 0.27–1.06) at day 28.
> Serious adverse events occurred in 20 patients (14.1%) in the tofacitinib group and in 17 (12.0%) in the placebo group.
Among patients hospitalized with Covid-19 pneumonia, tofacitinib led to a lower risk of death or respiratory failure through day 28 than placebo. |
| Nature Commun 16JUN2021 | Modeling the effectiveness of olfactory testing to limit SARS-CoV-2 transmission | Larremore D.B., et al. USA | Diagnostics | **Aim:** Analyzing how screening for olfactory dysfunction could impact COVID-19 spread depending on the prevalence of olfactory dysfunction among infected individuals, its duration, the timing of onset, and the frequency of testing
Methods:
> Olfactory dysfunction is a symptom identified in 76–83% of SARS-CoV-2 infections, including those with no other symptoms, when a standardized olfaction test is used
> Simulations using a stochastic SIR model with susceptible, infected, recovered, isolated and self-isolated compartments
> Individual viral loads were simulated for each infection based on key features of latency, proliferation, peak, and clearance identified in the literature
> Individuals who scored positive for olfactory dysfunction are tested by RT-PCR and isolated if positive
> 35% of individuals are assumed to have viral load trajectories with prolonged clearance times and self isolate within 0–2 days of peak viral load
> 80% of the population is assumed to participate in the screening protocol, with olfactory testing either daily, every third day, or weekly
Findings:
> Screening for olfactory dysfunction daily or every third day limits viral spread in simulations, provided symptom prevalence was larger than 50%
> When symptom prevalence is 75% or higher, olfactory screening every third day has comparable effectiveness than weekly RT-PCR or antigen testing
> Estimating the reproductive number R shows that daily, or every 3 days, olfactory testing is sufficient to keep viral infections from developing into an outbreak, provided that olfactory dysfunction typically occurs within 2 days of positivity by RT-PCR
> Cost estimates were performed and show a reduction of cost by a factor of 16 to 31
Conclusions:
> The study suggests that screening for olfactory dysfunction could be a high impact and cost-effective method for broad COVID-19 screening and surveillance
> It can be also useful as a point-of-entry screening tool, such as screening of airline passengers |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMJ 15JUN2021</td>
<td>Risk of hospital admission for patients with SARS-CoV-2 variant B.1.1.7: cohort analysis</td>
<td>Nyberg T., et al. UK gotopaper</td>
<td>Public Health / Epidemiology - Variants</td>
<td>Retrospective cohort analysis to evaluate the relation between diagnosis of covid-19 with SARS-CoV-2 variant B.1.1.7 and the risk of hospital admission compared with diagnosis with wild-type SARS-CoV-2 variants. Participants: 839 278 patients with laboratory confirmed covid-19, of whom 36 233 had been admitted to hospital within 14 days, tested between 23 Nov 2020 and 31 Jan 2021 and assessed for S-gene target failure (SGTF), a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. Main outcome: hospital admission 1-14 days after the first positive SARS-CoV-2 test. Results: > 27 710 (4.7%) of 592 409 patients with SGTF variants and 8523 (3.5%) of 246 869 patients without SGTF variants had been admitted to hospital within 1-14 days. The stratum adjusted hazard ratio of hospital admission was 1.52 (95%CI, 1.47-1.57) for patients with covid-19 infected with SGTF variants, compared with those infected with non-SGTF variants. > The effect was modified by age (P<0.001), with hazard ratios of 0.93-1.21 in patients younger than 20 years with versus without SGTF variants, 1.29 in those aged 20-29, and 1.45-1.65 in those aged ≥30 years. > The adjusted absolute risk of hospital admission within 14 days was 4.7% (95%CI, 4.6%-4.7%) for patients with SGTF variants and 3.5% (3.4% to 3.5%) for those with non-SGTF variants. Risk of hospital admission is higher for people infected with the B.1.1.7 variant compared with wild-type SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults older than 30 years.</td>
</tr>
<tr>
<td>Ann Intern Med. 15JUN21</td>
<td>Safety and Immunogenicity of a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series</td>
<td>Werbel W.A., et al. USA gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Description of antibody responses and vaccine reactions in recipients of solid organ transplants who had a suboptimal response to standard vaccination and subsequently received a third dose of vaccine between 20 March 2021 and 10 May 2021. Findings: > Thirty patients (median age 57 years, 17 women, and 1 non-White. None of the patients were exposed to SARS CoV-2. In 25 patients, maintenance immunosuppression included tacrolimus or cyclosporine plus mycophenolate. In addition, corticosteroids were used for 24 patients, sirolimus for 1, and belatacept for 1. The median time between transplantation and initial vaccination was 4.5 years. During the initial vaccination, 57% of the 30 patients received 2 doses of the 162b2 vaccine (Pfizer/BioNTech), and 43% received 2 doses of the mRNA-1273 vaccine (Moderna). > Before 3rd dose 24 patients had negative antibody titers, and 6 patients had low-positive antibody titers > Patients received the third dose of vaccine a median of 67 days (IQR, 54 to 81 days) after the second dose of their initial vaccine series; 15 patients received the Ad26.COV2.S vaccine (Johnson & Johnson/Janssen), 9 received the mRNA-1273 vaccine (Moderna), and 6 received the 162b2 vaccine (Pfizer/BioNTech). > Of the 6 patients with low-positive antibody titers before the third dose, all had high-positive antibody titers after the third dose. > Of the 24 patients with negative antibody titers before the third dose, only 6 (25%) had high-positive antibody titers after the third dose. Two (8%) had low-positive antibody titers, and 16 (67%) remained negative. >Safety: Fifteen patients reported mild or moderate local reactions, and 1 reported severe arm pain Conclusions: These observations support the use of clinical trials to determine whether booster doses to prevent COVID-19 in transplant patients can be incorporated into clinical practice.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Science Immunol. 15JUN21</td>
<td>Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients</td>
<td>Rincon-Arevalo H., et al. International gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). > Study of humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Findings > Markedly impaired anti-BNT162b2 responses among KTR and DP compared to HC. > In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. > KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. > The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. > The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. Conclusions Immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells.</td>
</tr>
<tr>
<td>Nature Commun. 15JUN2021</td>
<td>Molecular benchmarks of a SARS-CoV-2 epidemic</td>
<td>Jonsson H., et al. Iceland gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Assessing epidemic control with molecular information during a well characterized epidemic in Iceland. Findings > We demonstrate how the viral concentration decreased in those newly diagnosed as the epidemic transitioned from exponential growth phase to containment phase. > The viral concentration in the cases identified in population screening decreased faster than in those symptomatic and considered at high risk and that were targeted by the healthcare system. > The viral concentration persists in recovering individuals as we found that half of the cases are still positive after two weeks. > We demonstrate that accumulation of mutations in SARS-CoV-2 genome can be exploited to track the rate of new viral generations throughout the different phases of the epidemic, where the accumulation of mutations decreases as the transmission rate decreases in the containment phase. Overall, the molecular signatures of SARS-CoV-2 infections contain valuable epidemiological information that can be used to assess the effectiveness of containment measures.</td>
</tr>
<tr>
<td>Nature 14JUN2021</td>
<td>Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection</td>
<td>Wang Z., et al. USA gotopaper</td>
<td>Immunology</td>
<td>Report on immunological status of a cohort of 63 COVID-19-convalvescent individuals assessed at 1.3, 6.2 and 12 months after infection, 41% of whom also received mRNA vaccines. > In the absence of vaccination antibody reactivity to the receptor binding domain (RBD) of SARS-CoV-2, neutralizing activity and the number of RBD-specific memory B cells remain relatively stable from 6 to 12 months. > Vaccination increases all components of the humoral response, and as expected, results in serum neutralizing activities against variants of concern that are comparable to or greater than neutralizing activity against the original Wuhan Hu-1 achieved by vaccination of naive individuals. > The mechanism underlying these broad-based responses involves ongoing antibody somatic mutation, memory B cell clonal turnover, and development of monoclonal antibodies that are exceptionally resistant to SARS-CoV-2 RBD mutations, including those found in variants of concern. > B cell clones expressing broad and potent antibodies are selectively retained in the repertoire over time and expand dramatically after vaccination. The data suggest that immunity in convalescent individuals will be very long lasting and that convalescent individuals who receive available mRNA vaccines will produce antibodies and memory B cells that should be protective against circulating SARS-CoV-2 variants.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
Aim: To study skeletal muscle and myocardial inflammation in patients with COVID-19 who had died.
Methods: Case-control autopsy series were conducted in a university hospital as a multidisciplinary postmortem investigation. Patients with COVID-19 or other critical illnesses who had died between March 2020 and February 2021 and on whom an autopsy was performed were included.
Findings:
- Skeletal muscle samples from the patients who died with COVID-19 showed a higher overall pathology score (mean [SD], 3.4 [1.8] vs 1.5 [1.0]) and a higher inflammation score (mean [SD], 3.5 [2.1] vs 1.0 [0.6]).
- Relevant expression of MHC class I antigens on the sarcolemma was present in 23 of 42 specimens from patients with COVID-19 (55%) and upregulation of MHC class II antigens in 7 of 42 specimens from patients with COVID-19 (17%), but neither were found in any of the controls.
- Increased numbers of NK cells (median [interquartile range], 8 [8] vs 3 [4] cells per 10 high-power fields, 1-10 cells per 10 high-power fields) were found.
- Skeletal muscles showed more inflammatory features than cardiac muscles, and inflammation was most pronounced in patients with COVID-19 with chronic courses.
- In some muscle specimens, SARS-CoV-2 RNA was detected by reverse transcription-polymerase chain reaction, but no evidence for a direct viral infection of myofibers was found by immunohistochemistry and electron microscopy.

Most individuals with severe COVID-19 showed signs of myositis ranging from mild to severe. Inflammation of skeletal muscles was associated with the duration of illness and was more pronounced than cardiac inflammation. SARS-CoV-2 may be associated with a postinfectious, immune-mediated myopathy. |

| JAMA Pediatrics 11JUN2021 | Comparison of Symptoms and RNA Levels in Children and Adults With SARS-CoV-2 Infection in the Community Setting | Chung E., et al. USA | Virology |
Aim: to characterize symptoms of pediatric COVID-19 in the community and analyze the association between symptoms and SARS-CoV-2 RNA levels, as approximated by cycle threshold (Ct) values, in children and adults.
Sample: population-based convenience sample of children <18 years and adults in Washington, who enrolled for home self-collection of upper respiratory samples for SARS-CoV-2 testing, Mar-Nov 2020.
Main Outcomes: RT-PCR-confirmed SARS-CoV-2 infection, with Ct values stratified by age and symptoms.
Results:
- Among 555 SARS-CoV-2–positive participants (mean [SD] age, 33.7 [20.1] years; 320 were female [57.7%]), 47 of 123 children (38.2%) were asymptomatic compared with 31 of 432 adults (7.2%).
- When symptomatic, fewer symptoms were reported in children compared with adults (mean [SD], 1.6 [2.0] vs 4.5 [3.1]).
- Symptomatic individuals had lower Ct values (higher viral RNA levels) than asymptomatic individuals (adjusted estimate for children, −3.0; 95% CI, −5.5 to −0.6; P = .02; adjusted estimate for adults, −2.9; 95% CI, −5.2 to −0.6; P = .01).
- The difference in mean Ct values was neither statistically significant between symptomatic children and symptomatic adults (adjusted estimate, −0.7; 95% CI, −2.2 to 0.9; P = .41) nor between asymptomatic children and asymptomatic adults (adjusted estimate, −0.6; 95% CI, −4.0 to 2.8; P = .74).

SARS-CoV-2 RNA levels were significantly higher in symptomatic individuals than in asymptomatic individuals and no significant age-related differences were found. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA Netw Open 11JUN2021</td>
<td>Trends in Venous Thromboembolism Anticoagulation in Patients Hospitalized With COVID-19</td>
<td>Vaughn V. M., et al. USA gotopaper</td>
<td>Clinics</td>
<td>To characterize frequency, variation across hospitals, and change over time in VTE prophylaxis and treatment-dose anticoagulation in patients hospitalized for COVID-19, as well as the association of anticoagulation strategies with in-hospital and 60-day mortality. Methods >This cohort study of adults hospitalized with COVID-19 used a pseudorandom sample from 30 U.S. hospitals in the state of Michigan participating in a collaborative quality initiative >Data analyzed were from patients hospitalized between March 7, 2020, and June 17, 2020. Data were analyzed through March 2021 Findings >Of a total 1351 patients with COVID-19 included, only 18 (1.3%) had a confirmed VTE, and 219 (16.2%) received treatment-dose anticoagulation >Use of treatment-dose anticoagulation without imaging ranged from 0% to 29% across hospitals and increased over time >Of 1127 patients who ever received anticoagulation, 392 (34.8%) missed 2 or more days of prophylaxis. Missed prophylaxis varied from 11% to 61% across hospitals and decreased markedly over time (aOR, 0.89; 95% CI, 0.82-0.97 per week). >VTE nonadherence was associated with higher 60-day but not in-hospital mortality. Receiving any dose of anticoagulation (vs no anticoagulation) was associated with lower in-hospital mortality (only prophylactic dose: aHR, 0.36; 95% CI, 0.26-0.52; any treatment dose: aHR, 0.38; 95% CI, 0.25-0.58) >However, only the prophylactic dose of anticoagulation remained associated with lower mortality at 60 days (prophylactic dose: aHR, 0.71; 95% CI, 0.51-0.90; treatment dose: aHR, 0.92; 95% CI, 0.63-1.35). This large, multicenter cohort of patients hospitalized with COVID-19, found evidence of rapid dissemination and implementation of anticoagulation strategies, including use of treatment-dose anticoagulation. As only prophylactic-dose anticoagulation was associated with lower 60-day mortality, prophylactic dosing strategies may be optimal for patients hospitalized with COVID-19.</td>
</tr>
<tr>
<td>Lancet Child Adolesc Health 10JUN2021</td>
<td>Clinical characteristics and risk factors for death among hospitalised children and adolescents with COVID-19 in Brazil: an analysis of a nationwide database</td>
<td>Oliveira E.A., et al. Brazil gotopaper</td>
<td>Clinics</td>
<td>Aim: to characterise the clinical features of children and adolescents hospitalised with laboratory-confirmed SARS-CoV-2 infection and to evaluate risk factors for COVID-19-related death in this population. Methods Analysis of all patients <20 years who had qRT-PCR-confirmed COVID-19 and were registered in a nationwide surveillance database of patients admitted to hospital with severe acute respiratory disease in Brazil (SIVEP-Gripe). Primary outcome: time to recovery (discharge) or in-hospital death, evaluated by competing risks analysis (cumulative incidence function). Findings >Of the 82 055 patients younger than 20 years reported to SIVEP-Gripe during the study period, 11 613 (14.2%) had available data >Among these patients, 886 (7.6%) died in hospital (median 6 days [IQR 3–15] after hospital admission). 10 041 (86.5%) patients were discharged from the hospital, 369 (3.2%) were in hospital at the time of analysis, and 317 (2.7%) were missing information on outcome. >The estimated probability of death was 4.8% during the first 10 days after hospital admission, 6.7% during the first 20 days, and 8.1% at the end of follow-up. >The competing risks multivariate survival analysis showed that risk of death was increased in infants <2 years (hazard ratio 2.36) or adolescents aged 12–19 years (2.23) relative to children aged 2–11 years; those of Indigenous ethnicity (3.36) relative to those of White ethnicity. Death from COVID-19 was associated with age, Indigenous ethnicity, poor geopolitical region, and pre-existing medical conditions. Disparities in health care, poverty, and comorbidities can contribute to magnifying the burden of COVID-19 in more vulnerable and socioeconomically disadvantaged children and adolescents in Brazil.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
> Patients received 2 vaccine doses, 21 days apart
> Antibody titers were measured by using the Elecsys Anti-SARS-CoV-2 S assay after administration of the second dose.

Findings
> 167 patients with CLL: antibody response rate: 39.5%.
> Comparison between 52 patients with CLL and 52 age- and sex-matched healthy control subjects revealed a significantly reduced response rate among patients (52% vs 100%, respectively; adjusted odds ratio, 0.010; 95% confidence interval, 0.001-0.162; P < .001).
> The response rate was highest in patients who obtained clinical remission after treatment (79.2%), followed by 55.2% in treatment-naive patients and 16.0% in patients under treatment at the time of vaccination.
> Patients treated with either Bruton’s tyrosine kinase inhibitors or venetoclax ± anti-CD20 antibody, response rates were considerably low (16.0% and 13.6%).
> None of the patients exposed to anti-CD20 antibodies <12 months before vaccination responded.
> In a multivariate analysis, independent predictors of response were younger age, female sex, lack of currently active treatment, IgG levels ≥550 mg/dL, and immunoglobulin M levels ≥40 mg/dL.

Conclusions

| Nature Med. 10JUN2021 | Community-level evidence for SARS-CoV-2 vaccine protection of unvaccinated individuals | Milman O., et al. Israel gotopaper | Vaccines - Immunisation | **Aim:** to analyse whether and to what extent the fraction of patients vaccinated in each community affects the risk of infection in an unvaccinated cohort of individuals <16 years old in same community.

Methods
Analysis on the vaccination rates and test results of 177 distinct communities with a presumed low rate of natural immunization as inferred by a low fraction of individuals infected with SARS-CoV-2. The vaccination dates and test results were retrieved of members of Maccabi Healthcare Services (MHS), Israel’s second largest healthcare maintenance organization (Dec 2020-Mar 2021). The study population is representative of only part of the overall population for each community.

Findings
> Rates of vaccination in each community are associated with a substantial later decline in infections among a cohort of individuals aged under 16 years, who are unvaccinated.
> On average, for each 20 percentage points of individuals who are vaccinated in a given population, the positive test fraction for the unvaccinated population decreased approximately twofold. **These results provide observational evidence that vaccination not only protects individuals who have been vaccinated but also provides cross-protection to unvaccinated individuals in the community.**

> **Sera neutralize** engineered SARS-CoV-2 with a USA-WA1/2020 genetic background (a virus strain isolated in January 2020) and spike glycoproteins from the newly emerged B.1.617.1, B.1.617.2, B.1.618 (all first identified in India) or B.1.525 (first identified in Nigeria) lineages.
> Geometric mean plaque reduction neutralization titers against the variant viruses, particularly the B.1.617.1 variant, appear lower than the titer against USA-WA1/2020 virus, but all sera tested neutralize the variant viruses at titers of at least 40.

The susceptibility of these newly emerged variants to BNT162b2 vaccine-elicited neutralization supports mass immunization strategies.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Med. 09JUN2021 | First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland | Simpson C.R., et al. UK gotopaper | Vaccines | Estimation of the associations between exposure to first-dose ChAdOx1 or BNT162b2 vaccination and hematological and vascular adverse events
Methods > Nested incident-matched case-control study and a confirmatory self-controlled case series (SCCS) analysis.
Findings > Association was between ChAdOx1 vaccination and idiopathic thrombocytopenic purpura (ITP) (0–27 d after vaccination; adjusted rate ratio (aRR) = 5.77, 95% confidence interval (CI), 2.41–13.83), with an estimated incidence of 1.13 (0.62–1.63) cases per 100,000 doses. An SCCS analysis confirmed that this was unlikely due to bias (RR = 1.98 (1.29–3.02)). > Increased risk for arterial thromboembolic events (aRR = 1.22, 1.12–1.34) 0–27 d after vaccination, with an SCCS RR of 0.97 (0.93–1.02). > For hemorrhagic events 0–27 d after vaccination, the aRR was 1.48 (1.12–1.96), with an SCCS RR of 0.95 (0.82–1.11). > A first dose of ChAdOx1 was found to be associated with small increased risks of ITP, with suggestive evidence of an increased risk of arterial thromboembolic and hemorrhagic events. The attenuation of effect found in the SCCS analysis means that there is the potential for overestimation of the reported results, which might indicate the presence of some residual confounding or confounding by indication.
Conclusions Public health authorities should inform their jurisdictions of these relatively small increased risks associated with ChAdOx1. No positive associations were seen between BNT162b2 and thrombocytopenic, thromboembolic and hemorrhagic events. |
| Nature Med. 09JUN2021 | Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom | Pritchard E., et al. UK gotopaper | Public Health / Epidemiology | Methods > We used the Office for National Statistics COVID-19 Infection Survey—a large community-based survey of individuals living in randomly selected private households across the United Kingdom—to assess the effectiveness of the BNT162b2 (Pfizer–BioNTech) and ChAdOx1 nCoV-19 (Oxford–AstraZeneca; ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30; as a surrogate for viral load) and gene positivity pattern (compatible with B.1.1.7 or not)
Results > Using 1,945,071 real-time PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021 > Vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 d after the first dose (61% (95% confidence interval (CI) = 54–68%) versus 66% (95% CI = 60–71%), respectively), with greater reductions observed after a second dose (79% (95% CI = 65–88%) versus 80% (95% CI = 73–85%), respectively) > The largest reductions were observed for symptomatic infections and/or infections with a higher viral burden.
Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of a difference between the BNT162b2 and ChAdOx1 vaccines. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>

Findings:
> Ad26.COV2.S induced median pseudovirus neutralizing antibody titers 5.0- and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 following vaccination.
> Median binding antibody titers were 2.9- and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020.
> Antibody-dependent cellular phagocytosis, complement deposition, and NK cell activation responses were largely preserved against the B.1.351 variant.
> CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1, and CAL.20C variants.

Conclusions
These data show that neutralizing antibody responses induced by Ad26.COV2.S are reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses are largely preserved against SARS-CoV-2 variants. |
| Cell 08JUN2021 | SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD and S2 | Amanat F., et al. USA gotopaper | Vaccines | **Aim:** to study the unbiased plasmablast response to SARS-CoV-2 mRNA-based vaccination.

Results:
> Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection.
> The ratio of binding to neutralizing antibodies after vaccination was greater after natural infection.
> At the monoclonal level, the majority of vaccine-induced antibodies did not have neutralizing activity.
> A co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to seasonal human coronaviruses OC43 and HKU1 was found.
> Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
> Data from plasmablasts suggest that, at least, some of the vaccine-induced response is biased by pre-existing immunity to human β-coronaviruses. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet Rheumatol. 08JUN2021</td>
<td>Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study</td>
<td>Rodriguez-Smith J. J., et al. USA</td>
<td>Clinics</td>
<td>The pathogenesis of Multisystem inflammatory syndrome in children (MIS-C) remains undefined, and whether specific inflammatory biomarker patterns can distinguish MIS-C from other hyperinflammatory syndromes, including Kawasaki disease and macrophage activation syndrome (MAS), is unknown. Therefore, we aimed to investigate whether inflammatory biomarkers could be used to distinguish between these conditions.</td>
</tr>
</tbody>
</table>

Methods
> Clinical and laboratory features as well as S100A8/A9, S100A12, interleukin (IL)-18, chemokine (C-X-C motif) ligand 9 (CXCL9), and IL-6 concentrations were assessed by ELISA and compared using parametric and non-parametric tests and receiver operating characteristic curve analysis.

Results
> Between April 30, 2019, and Dec 14, 2020, we enrolled 19 patients with MIS-C and nine patients with Kawasaki disease.
> Patients with MIS-C and Kawasaki disease had similar S100 proteins and IL-18 concentrations but patients with MIS-C were distinguished by significantly higher median concentrations of the IFNγ-induced CXCL9 (1730 pg/mL [IQR 604–6300] vs 278 pg/mL [54–477]; p=0.038).
> Stratifying patients with MIS-C by CXCL9 concentrations (high vs low) revealed differential severity of clinical and laboratory presentation.
> Compared with patients with MIS-C and low CXCL9 concentrations, more patients with high CXCL9 concentrations had acute kidney injury, altered mental status, shock, and myocardial dysfunction; these patients also had higher concentrations of systemic inflammatory markers and increased severity of cytopenia and coagulopathy.
> By contrast, patients with MIS-C and low CXCL9 concentrations resembled patients with Kawasaki disease, including the frequency of coronary involvement.
> Elevated concentrations of S100A8/A9, S100A12, and IL-18 were also useful in distinguishing systemic JIA from Kawasaki disease with high sensitivity and specificity.

Our findings show MIS-C is distinguishable from Kawasaki disease primarily by elevated CXCL9 concentrations. The stratification of patients with MIS-C by high or low CXCL9 concentrations provides support for MAS-like pathophysiology in patients with severe MIS-C, suggesting new approaches for diagnosis and management.

| Science Transl Med. 08JUN2021 | Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection | Greaney A.J., et al. USA | Vaccines | The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted by antibodies elicited by vaccination or natural infection. |

Aim: to investigate how human antibody responses to vaccines are influenced by viral mutations through deep mutational scanning to compare the specificity of polyclonal antibodies elicited by either two doses of the mRNA-1273 COVID-19 vaccine or natural infection with SARS-CoV-2.

> The neutralizing activity of vaccine-elicited antibodies was more targeted to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein compared to antibodies elicited by natural infection.
> Within the RBD, binding of vaccine-elicited antibodies was more broadly distributed across epitopes compared to infection-elicited antibodies.
> This greater binding breadth means that single RBD mutations have less impact on neutralization by vaccine sera compared to convalescent sera.

Antibody immunity acquired by natural infection or different modes of vaccination may have a differing susceptibility to erosion by SARS-CoV-2 evolution.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
> Phylogenetic and phylogeographic analysis of genomic sequences shared on GISAID; identification of the EU1 variant (B.1.177 and its sublineages in Pango nomenclature)
> Estimation of travel volumes and fluxes using mobile phone data
> Phylodynamic analysis of transmission chains in Switzerland
> Characterisation of the S:A222V mutation in the spike through its effect on antibody binding, and through production of lentiviral particles pseudotyped with spike with or without the mutation.
> Analysis of a model estimating the number of variant imports in various European countries, and estimation of the local spread of the variant
Findings:
> The EU1 variant likely appeared in Spain and was detected in late June 2020; probably initially among agricultural workers in Aragon and Catalonia
> It carries spike mutation A222V, which does not seem to have a major phenotypic effect
> The EU1 variant was multiply introduced to different European countries once traveled resumed; it then spread locally and became dominant in some countries
> There is no detection of a particular transmission advantage of the EU1 variant; the rise in frequency is associated with epidemic rebound (EU1 spread because it was at the right place at the right time).
Conclusion:
> The study underlines the importance of coordinated and systematic sequencing efforts, and of multi-country genomic surveillance and data sharing to track variants across countries.
> The EU1 variant does not seem to be associated to neither increased transmissibility, immune escape nor different clinical consequences.
> The EU1 variant spread thanks to travel and regional differences in prevalence. This result should encourage policy makers to take social and geographic heterogeneities into account when designing policies for mitigating Covid-19 and reopening
> The study indicates that the summer travel guidelines and restrictions in 2020 were generally not sufficient to prevent onward transmission of introductions. The authors stress the importance of identifying ways of reducing the risk of introducing variants, and of monitoring and controlling the spread of introduced ones. |
| Nature 07JUNE2021 | Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants | Xu, J., et al. USA gotopaper | Therapeutics | One potential alternative to avert viral escape is the use of cameld VHHs or nanobodies, which can recognize epitopes often inaccessible to conventional antibodies
Methods
> We isolate anti-RBD nanobodies from llamas and “nanomice” we engineered to produce VHHs cloned from alpacas, dromedaries and camels
Findings
> We identified two sets of highly neutralizing nanobodies
> Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies.
> Group 2 is almost exclusively focused to the RBD-ACE2 interface and fails to neutralize variants carrying E484K or N501Y substitutions. Notably however, group 2 nanobodies retain full neutralization activity against variants when expressed as homotrimers, rivaling the most potent antibodies produced to date against SARS-CoV-2.
These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2 binding domain, and recognition of conserved epitopes largely inaccessible to human antibodies. Therefore, while new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA Netw Open 07JUN2021</td>
<td>Assessment of Effectiveness of 1 Dose of BNT162b2 Vaccine for SARS-CoV-2 Infection 13 to 24 Days After Immunization</td>
<td>Chodick G., et al. Israel gotopaper</td>
<td>Vaccines - Immunisation</td>
<td>Aim: to assess the short-term effectiveness of the first dose of the BNT162b2-vaccine against SARS-CoV-2 infection 13-24 days after immunization in a real-world setting. By comparing daily and cumulative infection rates in days 13-24 and in days 1-12 after one dose. Results: > Data for 503 875 individuals (mean [SD] age, 59.7 [14.7] years; 263 228 [52.4%] women) were analyzed, of whom 351 897 had follow-up data for days 13 to 24. > The cumulative incidence of SARS-CoV-2 infection was 2484 individuals (0.57%) during days 1 through 12 and 614 individuals (0.27%) in days 13 through 24. > The weighted mean (SE) daily incidence of SARS-CoV-2 infection in days 1 through 12 was 43.41 (12.07) infections per 100 000 population and 21.08 (6.16) infections per 100 000 population in days 13 through 24, a relative risk reduction (RRR) of 51.4% (95% CI, 16.3%-71.8%). > The decrease in incidence was evident from day 18 after the first dose. > Similar RRRs were calculated in individuals aged 60 years or older (44.5%; 95% CI, 4.1%-67.9%), those younger than 60 years (50.2%; 95% CI, 14.1%-71.2%), women (50.0%; 95% CI, 13.5%-71.0%), and men (52.1%; 95% CI, 17.3%-72.2%). > Findings were similar in subpopulations (eg, ultraorthodox Jewish: RRR, 53.5% [95% CI, 19.2%-73.2%]) and patients with various comorbidities (eg, cardiovascular diseases: RRR, 47.2% [95% CI, 7.8%-69.8%]). > Vaccine effectiveness against symptomatic COVID-19 was 54.4% (95% CI, 21.4%-73.6%). In this comparative effectiveness study of a single dose of the BNT162b2 vaccine, results were comparable to that of the phase III randomized clinical trial.</td>
</tr>
<tr>
<td>Cell 05JUN2021</td>
<td>The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies</td>
<td>Copin R., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Aim: to investigate the sequence diversity of the spike protein and monitored emergence of virus variants in SARS-CoV-2 isolates found in COVID-19 patients treated with the two-antibody combination REGEN-COV, as well as in preclinical in vitro studies using single, dual, or triple antibody combinations, and in hamster in vivo studies using REGEN-COV or single monoclonal antibody treatments. Methods: REGEN-COV (previously known as REGN-COV2) is a cocktail of two fully-human non-competing, neutralizing antibodies — casirivimab (REGN10933) and imdevimab (REGN10987) — that target the receptor binding domain (RBD) on the SARS-CoV-2 spike protein and thereby prevent viral entry into the host cell. Results: > While only one to two passages led to complete virus resistance against all mAbs used as monotherapy, seven consecutive passages were needed to reach complete resistance to the REGEN-COV combination, requiring selection of multiple simultaneous mutations impacting each antibody. > The three-antibody combination has similar neutralization potency as REGEN-COV. The addition of the third non-competing RBD mAb further increased protection against viral escape, with no loss of antiviral potency observed through eleven consecutive passages > Selection of resistance variants in almost half (18/40) of monotherapy treated animals versus none (0/20) of the animals treated with the REGEN-COV combination. > The REGEN-COV combination retained full neutralization potency, thereby providing its full antiviral activity in treated individuals and limiting any potential selection of resistant variants. The combination of non-competing antibodies in REGEN-COV provides protection against all current SARS-CoV-2 variants of concern/interest and also protects against emergence of new variants and their potential seeding into the population in a clinical setting.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Science 03JUN2021 | Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets | Maio N., et al. USA gotopaper | Therapeutics | **Context:** Fe-S clusters, inorganic cofactors often associated with biological redox reactions, have been identified in numerous proteins involved in DNA and RNA metabolism, where they play a variety of critical functional roles.
Aim: To analyse the primary sequences of SARS-CoV-2 proteins to investigate whether any might incorporate Fe-S clusters and to investigate whether nsp12 coordinated a Fe-S cluster. Additionally, to exploit the sensitivity of Fe-S clusters to oxidative degradation to prevent coronavirus replication in cell culture models.
Results:
> The catalytic subunit of the RdRp, nsp12, ligates two iron-sulfur metal cofactors in sites that were modeled as zinc centers in the available cryo-electron microscopy structures of the RdRp complex. These metal binding sites are essential for replication and for interaction with the viral helicase.
>> These iron-sulfur clusters thus serve as cofactors for the SARS-CoV-2 RdRp and are targets for therapy of COVID-19.
> Oxidation of the clusters by the stable nitroxide TEMPOL caused their disassembly, potently inhibited the RdRp, and blocked SARS-CoV-2 replication in cell culture.
> TEMPOL exhibited a strong antiviral activity at concentrations above 0.2 mM. Viral titers were reduced by more than 5 log10 in the presence of 0.4 mM TEMPOL, which is reported to have a CC50 greater than 100 mM
The study presents a molecular basis for pursuing TEMPOL and other related stable nitroxides as potential SARS-CoV-2 therapies during active viral infection. |
| JAMA 03JUN2021 | Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities A Randomized Clinical Trial | Cohen M.S., et al. USA gotopaper | Therapeutics | **Aim:** to determine the effect of bamlanivimab on the incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities.
Methods:
> Randomized, double-blind, single-dose, phase 3 trial that enrolled residents and staff of 74 skilled nursing and assisted living facilities in the United States with at least 1 confirmed SARS-CoV-2 index case.
> Participants were randomized to receive a single intravenous infusion of bamlanivimab, 4200 mg (n = 588), or placebo (n = 587).
Results:
> The prevention population comprised a total of 966 participants (666 staff and 300 residents) who were negative at baseline for SARS-CoV-2 infection and serology (mean age, 53.0 [range, 18-104] years; 722 [74.7%] women).
> Bamlanivimab significantly reduced the incidence of COVID-19 in the prevention population compared with placebo (8.5% vs 15.2%; odds ratio, 0.43 ; absolute risk difference, −6.6 percentage points).
> Five deaths attributed to COVID-19 were reported by day 57; all occurred in the placebo group.
> Among 1175 participants who received study product (safety population), the rate of participants with adverse events was 20.1% in the bamlanivimab group and 18.9% in the placebo group.
> The most common adverse events were urinary tract infection (reported by 12 participants [2%] who received bamlanivimab and 14 [2.4%] who received placebo) and hypertension (reported by 7 participants [1.2%] who received bamlanivimab and 10 [1.7%] who received placebo).
Among residents and staff in skilled nursing and assisted living facilities, treatment with bamlanivimab monotherapy reduced the incidence of COVID-19 infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gotopaper</td>
<td></td>
<td>Findings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Five arterial, venous thrombotic, or embolic events reported in 5 health care workers with known risk factors for thromboembolism (1.7 events per 100,000 participants)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- One case of pulmonary embolus occurred 23 days after vaccination in a 63-year-old woman on overweight, with hypertension, diabetes mellitus, and a history of venous thrombosis (fatal issue)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- A second case occurred in a 64-year-old woman who received a diagnosis of cor pulmonale 17 days after vaccination; this case had features consistent with chronic and recurrent pulmonary emboli.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Two cerebrovascular accidents (infarcts on imaging) were reported — 45-year-old woman with rheumatic heart disease and a history of human immunodeficiency virus infection, cerebrovascular accident, and aortic valve replacement, in whom left-sided weakness developed the day after vaccination,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 38-year-old woman who had given birth to twins 9 months before vaccination and presented with features of transient ischemic attack 8 days after vaccination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- A 65-year-old woman with chronic diabetes mellitus had deterioration and blurring of vision 8 days after vaccination and received a diagnosis of retinal vein occlusion and macular hemorrhage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- To date, no case of vaccine-induced immune thrombotic thrombocytopenia has been documented.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The rate of adverse events following Ad26.COV2.S vaccination is low, and thromboembolic events have occurred mainly in persons with risk factors for thromboembolism.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gotopaper</td>
<td></td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Characterization of the SARS-CoV-2 infections in a cohort of hospitalized patients with COVID19 in South Africa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Blood sample collection 89 patients at the time when the epidemic in South Africa as a whole was dominated by B1.531 which accounted for more than 90% of infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 28 (31%) were randomly selected for SARS-CoV-2 sequencing, all of whom were shown by phylogenetic analysis to be infected with B1.531.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Binding and neutralizing antibody responses of infected patients to the B1.531 spike protein: high-titer binding and neutralizing antibody responses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Titration of a subset of 46 samples revealed that plasma samples had higher titers to the spike protein of B1.531 than to the spike protein of the original variant (mean of 1.7 times as high), but high-level binding to the original variant remained</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Assessement of neutralisation capacity of sera B1.531 infected patients against P1 or original variant: - S3 of 57 samples maintained neutralization activity against the original variant (GMT 203), approximately one third of the titer against the B1.531 variant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 10 samples tested against P1 variant: high levels of neutralization of this variant, with some samples showing higher potency against P.1 than against B1.531</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B1.531 elicits robust neutralizing antibody responses against both the original variant and P.1, which indicates high levels of cross-reactivity.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lancet Microbe</td>
<td>Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study</td>
<td>Russel C.D., et al. UK gotopaper</td>
<td>Clinic</td>
<td>Aim: to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19 (ISARIC, CCP-UK study). Results: Analysis of data from 48 902 patients admitted to hospital (Feb 6 and June 8, 2020). Median age 74 years (IQR 59–84), 20 786 (42.6%) of 48 765 women. Microbiological investigations were recorded for 8649 (17-7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. > 762 (70-6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. > Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed 2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. > Bloodstream infections were most frequently caused by Escherichia coli and S aureus. > Among patients with available data, 13 390 (37-0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission. > 39 258 (85-2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). > Frequent use of broad-spectrum agents and use of carbapenem rather than carbapenem-sparing alternatives was identified. In patients admitted to hospital with COVID-19, bacterial infections are rare, and more likely to be secondary infections. The frequency and nature of antimicrobial use are concerning.</td>
</tr>
<tr>
<td>JAMA Intern Med.</td>
<td>Assessment of SARS-CoV-2 Reinfection 1 Year After Primary Infection in a Population in Lombardy, Italy</td>
<td>Vitale J., et al. Italy gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Aim: to investigate the one-year incidence (Feb 2021) of SARS-CoV-2 primary infection and reinfection among individuals who underwent diagnostic RT-PCR between Feb-July 2020 in Lombardy, Italy. Reinfections were defined by a second RT-PCR positivity beyond 90 days after complete resolution of the first infection and with at least 2 consecutive negative test results between episodes. Results: > Demographic characteristics: Median age 59 (IQR 40-78) years, positive cases were older and geographically distributed more in the industrial area of Legnano. > During follow-up (mean [SD], 280 [41] days) 5 reinfections (0.31%; 95% CI, 0.03%-0.58%) were confirmed among 1579 positive patients. > Most of reinjected patients were evaluated, treated, and followed in hospitals or dedicated COVID-19 ambulatoires. One was hospitalized, and 4 had a close relationship with health facilities. Mean (SD) interval between primary infection and reinfection was >230 (90) days. > Of 13 496 persons initially not infected with SARS-CoV-2, 528 (3.9%; 95% CI, 3.5%-4.2%) subsequently developed a primary infection. > The incidence density per 100 000 person days was 1.0 (95% CI, 0.5-1.5) for reinfections compared with 15.1 (95% CI, 14.5-15.7) for new infections, while the incidence rate ratio adjusted for age, sex, ethnicity, and the sanitary area was 0.07 (95% CI, 0.06-0.08). The study results suggest that reinfections are rare events and patients who have recovered from COVID-19 have a lower risk of reinfection 1 year later. Observation ended before SARS-CoV-2 variant spread.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **JAMA Oncol. 28MAY2021** | Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer | Massarweh A., et al. Israel gotopaper | Vaccines - Immunisation | **Aim:** To evaluate rates of antispark (anti-S) antibody response to a BNT162b2 vaccine in patients with cancer who are undergoing systemic treatment vs healthy controls.
Methods: Prospective cohort study included 102 adult patients with solid tumors undergoing active intravenous anticancer treatment and 78 controls who received the second dose of the BNT162b2 vaccine at least 12 days before enrollment. Serum samples were analyzed and the titers of the IgG antibodies against SARS-CoV-2 spike receptor-binding domain.
Results:
> The analysis included 180 participants, which comprised 102 patients with cancer (median [interquartile range (IQR)] age, 66 years; 58 men [57%]) and 78 healthy controls (median [IQR] age, 62 [49-70] years; 25 men [32%]).
> The most common tumor type was gastrointestinal (29 [28%]). In the patient group, 92 (90%) were seropositive for SARS-CoV-2 antispark IgG antibodies after the second vaccine dose, whereas in the control group, all were seropositive.
> The median IgG titer in the patients with cancer was significantly lower than that in the controls [1931 [IQR, 509-4386] AU/ml vs 7160 [IQR, 3129-11241] AU/m].
> In a multivariable analysis, the only variable that was significantly associated with lower IgG titers was treatment with chemotherapy plus immunotherapy (β, −3.5; 95% CI, −5.6 to −1.5). |
| **JAMA Oncol. 28MAY2021** | Difference in SARS-CoV-2 Antibody Status Between Patients With Cancer and Health Care Workers During the COVID-19 Pandemic in Japan | Yazaki S., et al Japan gotopaper | Vaccines - Immunisation | **Aim:** To evaluate serum SARS-CoV-2 antibody status in patients with cancer and health care workers (HCWs) during the COVID-19 pandemic in Japan.
Methods: Participants were enrolled for this prospective cross-sectional study between August 3 and October 30, 2020, from 2 comprehensive cancer centers in the epidemic area around Tokyo, Japan.
Results:
> A total of 500 patients with cancer (median age, 62.5 years [range, 21-88 years]; 265 men [55.4%]) and 1190 HCWs (median age, 40 years [range, 20-70 years]; 382 men [25.4%]) were enrolled.
> The seroprevalence was 1.0% (95% CI, 0.33%-2.32%) in patients and 0.67% (95% CI, 0.29%-1.32%) in HCWs (P = .48).
> The N-IgG and S-IgG antibody levels were significantly lower in patients than in HCWs (N-IgG: β, −0.38; 95% CI, −0.55 to −0.21; P < .001; and S-IgG: β, −0.39; 95% CI, −0.54 to −0.23; P < .001).
> Additionally, among patients, N-IgG levels were significantly lower in those who received chemotherapy than in those who did not (median N-IgG levels, 0.1 [interquartile range (IQR), 0.1-0.5] vs 0.1 [IQR, 0-0.3], P = .04).
> In contrast, N-IgG and S-IgG levels were significantly higher in patients who received immune checkpoint inhibitors than in those who did not (median N-IgG levels: 0.2 [IQR, 0.1-0.5] vs 0.1 [IQR, 0-0.3], P = .02; S-IgG levels: 0.15 [IQR, 0-0.3] vs 0.1 [IQR, 0-0.2], P = .02).
The seroprevalence of SARS-CoV-2 antibodies did not differ between the 2 groups; however, findings suggest that comorbid cancer and treatment with systemic therapy, including chemotherapy and immune checkpoint inhibitors, may influence the immune response to SARS-CoV-2. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
> SEIR epidemic model capturing social and geographic heterogeneity within a small geographic region (a single county), with stochastic transmission rate and heterogeneous local mobility
> Unsupervised machine learning to partition a county into local clusters using human mobility flow data from SafeGraph, giving smartphone coordinates over time
> Other data: test results (Public Health Offices of City of Madison & Dane County and Milwaukee County) between March 11-August 14, 2020; demographic and socioeconomic attributes (US Census Bureau)
> Online data assimilation and the ensemble Kalman filter method are used to update the model parameters along time
> Study of several scenarios of reopening policies
Findings:
> The spatial clustering constructed from mobility data is strongly correlated with demographic heterogeneity (e.g. in terms of race and ethnicity composition, age structure)
> There is a strong heterogeneity of the estimated effective reproduction number across clusters
> In a college town (Dane County), the most important heterogeneity is age structure
> In a large city area (Milwaukee County), racial and ethnic heterogeneity becomes more apparent
> Scenario studies indicate a strong response of the spread rate to various reopening policies
Conclusion:
Policy makers may need to take social and geographic heterogeneities into account very carefully when designing policies for mitigating the ongoing spread of Covid-19 and reopening. |
Methods:
> Ongoing multinational, placebo-controlled, observer-blinded trial
> Participants randomly assigned in a 1:1 ratio to receive two injections, 21 days apart, of 30 μg of BNT162b2 or placebo.
> Immunogenicity objective: noninferiority of the immune response to BNT162b2 in 12- to 15-year-old participants as compared with that in 16- to 25-year-old participants
> Safety (reactogenicity and adverse events) and efficacy against confirmed Covid-19 (onset ≥7 days after dose 2) in 12-15-yo cohort.
Findings:
> 1131 adolescents 12 to 15 years of age received BNT162b2; 1129 received placebo.
> BNT162b2 had a favorable safety and side-effect profile, with mainly transient mild-to-moderate reactogenicity (mainly injection-site pain [79-86% of participants], fatigue [60-66%], headache [55-65%]).
> No vaccine-related serious adverse events and few overall severe adverse events.
> The GMT of SARS-CoV-2 50% neutralizing titers after dose 2 in 12- to 15-year-old participants relative to 16- to 25-year-old participants was 1.76 (95% confidence interval [CI], 1.47 to 2.10), which met the noninferiority criterion of a lower boundary of the two-sided 95% confidence interval greater than 0.67 and indicated a greater response in the 12- to 15-year-old cohort.
> Among participants without evidence of previous SARS-CoV-2 infection, no Covid-19 cases with an onset of 7 or more days after dose 2 were noted among BNT162b2 recipients, and 16 cases occurred among placebo recipients.
> The observed VE was 100% (95% CI, 75.3 to 100).
Conclusions:
The BNT162b2 vaccine in 12- to 15-year-old recipients had a favorable safety profile, produced a greater immune response than in young adults, and was highly effective against Covid-19. |
Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial

Authors and link: Tardif J., et al. Canada [gotopaper](https://doi.org/10.1016/j.lane costing.2021.05.005)

Field of expertise: Therapeutics

Aim: To investigate the effect of colchicine (oral anti-inflammatory) on the composite of COVID-19-related death or hospital admission.

- Phase 3, 1:1 randomised, double-blind, adaptive, placebo-controlled, international multicentre trial.
- Patients with COVID-19 diagnosed by PCR testing or clinical criteria who were not being treated in hospital, ≥40-year-old and who had at least one high-risk characteristic.
- Treatment: orally administered colchicine (0.5 mg twice/day for 3 days, then once/day for 27 days thereafter) or matching placebo.

Primary efficacy endpoint: Composite of death or hospital admission for COVID-19.

Results

- Trial enrolment: March 23, 2020 - Dec 22, 2020. 4488 patients included (53.9% women; median age 54.0 years, IQR 47.0-61.0), 2235 were randomly assigned to colchicine and 2253 to placebo.
- Overall, he primary endpoint occurred in 104 (4.7%) of 2235 patients in the colchicine group and 131 (5.8%) of 2253 patients in the placebo group (odds ratio [OR] 0.79, 95% CI 0.61–1.03; p=0.081).
- Among the 4159 patients with PCR-confirmed COVID-19, the primary endpoint occurred in 96 (4.6%) of 2075 patients in the colchicine group and 126 (6.0%) of 2084 patients in the placebo group (OR 0.75, 0.57–0.99; p=0.042).
- Serious adverse events were reported in 108 (4.9%) of 2195 patients in the colchicine group and 139 (6.3%) of 2217 patients in the placebo group (p=0.051); pneumonia occurred in 63 (2.9%) of 2195 patients in the colchicine group and 92 (4.1%) of 2217 patients in the placebo group (p=0.021). Diarrhoea was reported in 300 (13.7%) of 2195 patients in the colchicine group and 161 (7.3%) of 2217 patients in the placebo group (p=0.0001).

In community-treated patients including those without diagnostic test, the effect of colchicine on COVID-19-related clinical events was not statistically significant. Among patients with PCR-confirmed COVID-19, colchicine led to a lower rate of the composite of death or hospital admission than placebo.

Same-day SARS-CoV-2 antigen test screening in an indoor mass-gathering live music event: a randomised controlled trial

Authors and link: Revollo B., et al. Spain [gotopaper](https://doi.org/10.1016/j.lane costing.2021.05.005)

Field of expertise: Public Health / Epidemiology

Primary outcome: Difference in incidence of RT-PCR-confirmed SARS-CoV-2 infection at 8 days, control vs. intervention groups.

Findings

- Randomised controlled open-label trial to assess effectiveness of a comprehensive preventive intervention for a mass-gathering indoor event (live concert) based on systematic same-day screening of attendees with Ag-RDTs, use of facial masks, and adequate air ventilation in Barcelona (Spain) (NCT04668625.).
- Adults 18–59- yo, Ag-RDT negative result from a nasopharyngeal swab collected immediately before entering the event.
- Randomisation 1:1 to either attend the indoor event for 5 hours or go home.
- Nasopharyngeal specimens analysed by RT-PCR and cell culture.
- 8 days after the event, a nasopharyngeal swab was collected and analysed by Ag-RDT, RT-PCR, and a transcription-mediated amplification test (TMA).

Conclusions

Preliminary evidence on indoor mass-gathering event safety during a COVID-19 outbreak under a comprehensive preventive intervention.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clin Infect Dis. 27MAY2021</td>
<td>Risk Factors for Death Among the First 80,543 COVID-19 Cases in China: Relationships Between Age, Underlying Disease, Case Severity, and Region</td>
</tr>
<tr>
<td>JAMA 26MAY2021</td>
<td>Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors and link</th>
<th>Field of expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang Y., et al. China gotopaper</td>
<td>Public Health / Epidemiology</td>
</tr>
</tbody>
</table>

Title: Risk Factors for Death Among the First 80,543 COVID-19 Cases in China: Relationships Between Age, Underlying Disease, Case Severity, and Region

Key facts

Examine risk factors for COVID-19 death

Methods

- A total of 80,543 COVID-19 cases reported in China, nationwide, through April 8, 2020 were included

Findings

- Overall national case fatality ratio (CFR) was 5.64%
- Risk factors for death were older age, presence of underlying disease, worse case severity, and near-epicenter region
- CFR increased from 0.35% (30-39 years) to 18.21% (≥70 years) without underlying disease
- Regardless of age, CFR increased from 2.50% for no underlying disease to 7.72% for 1, 13.99% for 2, and 21.99% for ≥3
- CFR increased with worse case severity from 2.80% (mild), to 12.51% (severe) and 48.60% (critical) regardless of region
- Compared to other regions, CFR was much higher in Wuhan regardless of case severity (mild: 3.83% versus 0.14% in Hubei and 0.03% elsewhere; moderate: 4.60% versus 0.21% and 0.06%; severe: 15.92% versus 5.84% and 1.86%; and critical: 58.57% versus 49.80% and 18.39%).

- Older patients regardless of underlying disease and patients with underlying disease regardless of age were at elevated risk of death.
- Higher death rates near the outbreak epicenter and during the surge of cases reflect the deleterious effects of allowing health systems to become overwhelmed.

Title: Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults

Key facts

Evaluation of the efficacy and adverse events of 2 inactivated COVID-19 vaccines.

Methods

- Randomized, double-blind, phase 3 trial. United Arab Emirates and Bahrain. > 18 years of age without history of COVID-19.
- Participants randomized to receive 1 of 2 inactivated vaccines developed from SARS-CoV-2 WIV04 (5 µg/dose; n = 13,459) and HB02 (4 µg/dose; n = 13,465) strains or an aluminum hydroxide (alum)–only control (n = 13,458).
- 2 IM injections 21 days apart.

Primary outcome: efficacy against laboratory-confirmed symptomatic COVID-19 14 days following a second vaccine dose among participants who had no virologic evidence of SARS-CoV-2 infection at randomization.

Secondary outcome: efficacy against severe COVID-19.

Findings

- > 40,382 participants randomized (mean age, 36.1 years; 32,261 [84.4%] men), > 38,206 [94.6%] who received 2 doses were included in the primary efficacy analysis.
- Symptomatic COVID-19 was identified in 26 participants in the WIV04 group (12.1 [95% CI, 8.3-17.8] per 1000 person-years), 21 in the HB02 group (9.8 [95% CI, 6.4-15.0] per 1000 person-years), and 95 in the alum-only group (44.7 [95% CI, 36.6-54.6] per 1000 person-years). VE: 72.8% (95% CI, 58.1%-82.4%) for WIV04 and 78.1% (95% CI, 64.8%-86.3%) for HB02 (P < .001 for both).
- > Two severe cases of COVID-19 occurred in the alum-only group and none occurred in the vaccine groups.
- > Adverse reactions 7 days after each injection occurred in 41.7% to 46.5% of participants in the 3 groups; serious adverse events were rare and similar in the 3 groups (WIV04: 64 [0.5%]; HB02: 59 [0.4%]; alum-only: 78 [0.6%]).

Conclusions

Treatment of adults with either of 2 inactivated SARS-CoV-2 vaccines significantly reduced the risk of symptomatic COVID-19, and serious adverse events were rare.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy in preventing COVID-19.

Aim: to extend the previous phase 1/2 trial report and present BNT162b2 prime/boost induced immune response data from a second phase 1/2 trial in healthy adults (18-55 years of age).

Results
> BNT162b2 elicited strong antibody responses, with SARS-CoV-2 serum 50% neutralizing geometric mean titers up to 3.3-fold above those observed in COVID-19 human convalescent samples (HCS) one-week post-boost.
> BNT162b2-elicited sera neutralized 22 pseudoviruses bearing SARS-CoV-2 S variants.
> Most participants had a strong IFNγ- or IL-2-positive CD8+ and CD4+ T helper type 1 (TH1) T cell response, detectable throughout the full observation period of nine weeks following the boost.
> pMHC multimer technology identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains.
> One-week post-boost, epitope-specific CD8+ T cells of the early differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later.

BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes conserved in a broad range of variants at well tolerated doses.

Methods
> Prespecified interim analysis of an ongoing randomized, double-blind, phase 3 trial in the United Arab Emirates and Bahrain among adults 18 years and older without known history of COVID-19. ClinicalTrials.gov Identifier: NCT04510207;
> Participants were randomized to receive 1 of 2 inactivated vaccines developed from SARS-CoV-2 WIV04 (5 µg/dose; n = 13 459) and HB02 (4 µg/dose; n = 13 465) strains or an aluminum hydroxide (alum)-only control (n = 13 458) (2 intramuscular injections 21 days apart)

Outcomes: efficacy against laboratory-confirmed symptomatic COVID-19 14 days following a second vaccine dose among participants who had no virologic evidence of SARS-CoV-2 infection at randomization. Efficacy against severe COVID-19. Incidence of adverse events and reactions was collected in participants who received at least 1 dose.

Findings:
> 40 382 participants (mean age 36.1 yrs; 32 261 [84.4%] men)
> 38 206 (94.6%) received 2 doses
> During a median (range) follow-up duration of 77 (1-121) days, symptomatic COVID-19 was identified in 26 participants in the WIV04 group (12.1 [95% CI, 8.3-17.8] per 1000 person-years), 21 in the HB02 group (9.8 [95% CI, 6.4-15.0] per 1000 person-years), and 95 in the alum-only group (44.7 [95% CI, 36.6-54.6] per 1000 person-years), resulting in a vaccine efficacy, compared with alum-only, of 72.8% (95% CI, 58.1%-82.4%) for WIV04 and 78.1% (95% CI, 64.8%-86.3%) for HB02 (P < .001 for both).
> Two severe cases of COVID-19 occurred in the alum-only group and none occurred in the vaccine groups.
> Adverse reactions 7 days after each injection occurred in 41.7% to 46.5% of participants in the 3 groups; serious adverse events were rare and similar in the 3 groups (WIV04: 64 [0.5%]; HB02: 59 [0.4%]; alum-only: 78 [0.6%]).

Conclusion
Treatment of adults with either of 2 inactivated SARS-CoV-2 vaccines significantly reduced the risk of symptomatic COVID-19, and serious adverse events were rare.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| PNAS 25MAY2021 | Just 2% of SARS-CoV-2-positive individuals carry 90% of the virus circulating in communities | Yang Q., et al. USA [gotopaper](#) | Public Health / Epidemiology | **Aim:** Describing the estimated distribution of viral loads among SARS-CoV-2-positive asymptomatic individuals detected through random surveillance
Methods:
> Surveillance through repeated testing of asymptomatic individuals on the University of Colorado Boulder campus (72500 saliva samples; 1405 positive, mostly from unique individuals).
> Detection by qRT-PCR of saliva samples
> Estimation of viral loads from Ct values
> Comparison to datasets of symptomatic individuals
Findings:
> Distributions of viral loads are similar between asymptomatic and symptomatic populations
> Large heterogeneity of Ct values (hence viral loads): at a given time point 2% of positive individuals host 90% of the circulated virions
Limitations:
The authors interpret the difference in viral loads as exclusively due to individual variation in peak viral load. However, the authors do control for the time since infection, and therefore should not dismiss the fact that viral loads changes over the course of infection, which mechanically leads to a whole range of Ct values in a population sampled at a given point in time.
Conclusions:
At a given point in time, the vast majority of circulating virions in communities are found within the bodies of a small number of individuals. |
| JAMA Netw Open 25MAY2021 | Association of Circulating Sex Hormones With Inflammation and Disease Severity in Patients With COVID-19 | Dhindsa S., et al. USA [gotopaper](#) | Clinic | **Contribution of sex hormones to severe COVID-19 illness in men:** association of concentrations of serum testosterone, estradiol, and insulinlike growth factor 1 (IGF-1, concentrations of which are regulated by sex hormone signaling) with COVID-19 severity.
Methods
> Prospective cohort study
> Collection of serum samples from patients with COVID-19 (diagnosed using nasopharyngeal swabs).
> Testosterone, estradiol, and IGF-1 concentrations measured at the time of presentation (day 0) and at day 3, 7, 14, 28 after admission
Main Outcomes Baseline hormone concentrations compared among patients who had severe COVID-19 vs those with mild COVID-19.
Findings
> Among 152 patients (90 [59.2%] men; 62 [40.8%] women; mean [SD] age, 63 [16] years), 143 patients (94.1%) were hospitalized.
> Among 66 men with severe COVID-19, median testosterone concentrations were lower at day 0 (53 [18 to 114] ng/dL vs 151 [95 to 217] ng/dL; P = .01) and day 3 (19 [6 to 68] ng/dL vs 111 [49 to 274] ng/dL; P = .006) compared with 24 men with milder disease.
> Testosterone concentrations were inversely associated with concentrations of interleukin 6 (β = −0.43; 95% CI, −0.52 to −0.17; P < .001), C-reactive protein (β = −0.38; 95% CI, −0.78 to −0.16; P = .004), interleukin 1 receptor antagonist (β = −0.29; 95% CI, −0.64 to −0.06; P = .02), hepatocyte growth factor (β = −0.46; 95% CI, −0.69 to −0.25; P < .001), and interferon γ-inducible protein 10 (β = −0.32; 95% CI, −0.62 to −0.10; P = .007).
> Estradiol and IGF-1 concentrations were not associated with COVID-19 severity in men.
> Testosterone, estradiol, and IGF-1 concentrations were similar in women with and without severe COVID-19.
> Gene set enrichment analysis revealed upregulated hormone signaling pathways in CD14+CD16− (ie, classical) monocytes and CD14−CD16+ (ie, nonclassical) monocytes in male patients with COVID-19 who needed intensive care unit treatment vs those who did not.
Conclusion Lower testosterone concentrations during hospitalization were associated with increased disease severity and inflammation in men. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Clin Microbiol Infect. 25MAY2021 | An open-label randomized, controlled trial of the effect of lopinavir/ritonavir, lopinavir/ritonavir plus IFN-β-1a and hydroxychloroquine in hospitalized patients with COVID-19 | Ader F., et al. France gotopaper | Therapeutics | **Aim:** to evaluate clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-β-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in COVID-19 inpatients requiring oxygen and/or ventilatory support.
- Phase 3 multi-centre open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRY).
- Results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, stopped prematurely, are reported.
Primary outcome: clinical status at day 15, measured by the WHO 7-point ordinal scale.
Secondary outcomes included SARS-CoV-2 quantification in respiratory specimens, pharmacokinetic and safety analyses.
Results
> 583 participants (lopinavir/ritonavir, n=145; lopinavir/ritonavir-IFN-β-1a, n=145; hydroxychloroquine, n=145; control, n=148), 418 (71.7%) males, median age 63yrs (IQR, 54-71), 211 (36.2%) had severe disease.
> The day-15 clinical status was not improved with investigational treatments: lopinavir/ritonavir vs. control, adjusted odds ratio (aOR) 0.83, (95% CI 0.55-1.26, P=0.39); lopinavir/ritonavir-IFN-β-1a vs. control, aOR 0.69 (95% CI 0.45-1.04, P=0.08); hydroxychloroquine vs. control, aOR 0.93 (95% CI 0.62-1.41, P=0.75).
> No significant effect of investigational treatment was observed on SARS-CoV-2 clearance.
> trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen.
> The occurrence of Serious Adverse Events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. **Conclusions**
In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-β-1a and hydroxychloroquine did not improve the clinical status at day 15, nor SARS-CoV-2 clearance in respiratory tract specimens. |
- Vaccinates with heart, kidney, liver, or pancreas transplants.
- Spike protein antibodies monitored before and after vaccination. **Findings**
> 950 patients of the 2666 within receiving at least 1 dose of an mRNA vaccine (BNT162b2 vaccine [Pfizer-BioNTech], n = 942; mRNA-1273 vaccine [Moderna], n = 8) and had anti–SARS-CoV-2 antibodies monitored. Fifty patients had vaccination without monitoring of antibodies, 80 patients were planned to be vaccinated within the month , and 257 patients declined the vaccine. No feedback from the remaining 1329 patients.
> 895 of the 950 patients had an available serologic screening just before the first injection. Prevalence of anti–SARS-CoV-2 antibodies: 2.1% (95% CI, 1.3% to 3.3%; n = 19 of 895). Only 5 of the 19 patients who were seropositive previously had symptomatic COVID-19.
> A total of 576 patients benefited from a second injection at day 28. The prevalence of anti–SARS-CoV-2 antibodies before the second injection was 6.4% (CI, 4.6% to 8.8%; n = 37 of 576).
> In 367 patients who had a 4-week follow-up after the second dose, the prevalence of anti–SARS-CoV-2 antibodies increased from 1.4% (CI, 0.4% to 3.2%; n = 5 of 367) at baseline to 6.3% (CI, 4.0% to 9.3%; n = 23 of 367) at day 28 and 33.8% (CI, 29.0% to 38.9%; n = 124 of 367) 1 month after the second dose
> The tolerance of mRNA vaccines was excellent, with no serious adverse events reported, except in 1 patient with a liver transplant who developed paresis of the lower limb. **Conclusion**
> In immunocompromised patients, such as recipients of SOT, a weak humoral response to mRNA vaccines is reported.
> Recipients of liver transplant showed a better humoral response than recipients of other organs. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Immunol. 25MAY2021</td>
<td>SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees</td>
<td>Geers D., et al. Netherlands gotopaper</td>
<td>Immunology</td>
<td>Aim: to study humoral and cellular immune responses to wild type SARS-CoV-2 and the B.1.1.7 and B.1.351 variants of concern in a cohort of 121 BNT162b2 mRNA-vaccinated health care workers (HCW)</td>
</tr>
<tr>
<td>Science Immunol. 25MAY2021</td>
<td>Estimating infectiousness throughout SARS-CoV-2 infection course</td>
<td>Jones T.C., et al. Germany / USA gotopaper</td>
<td>Virology</td>
<td>Aim: to analyse viral load and whether samples yield a replicating virus isolate in cell culture (parameters for quantifying viral infection and shedding). Sample: 25,381 German SARS-CoV-2 cases, including 6110 from test centres attended by pre-symptomatic, asymptomatic, and mildly-symptomatic (PAMS) subjects, 9519 who were hospitalised, and 1533 B.1.1.7 lineage infections.</td>
</tr>
<tr>
<td>Cell 24MAY2021</td>
<td>An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies</td>
<td>Liu Y., et al. Japan gotopaper</td>
<td>Virology</td>
<td>The effects of antibodies against spike protein domains other than the RBD are largely unknown. Screening of a series of anti-spike monoclonal antibodies from COVID-19 patients showed that some of antibodies against the N-terminal-domain (NTD) induced the open conformation of receptor binding domain (RBD) and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all the infectivity-enhancing antibodies bound to NTD in a similar manner. Divalent bridging of spikes is required to induce RBD-up state. The antibodies against this infectivity-enhancing site were identified in uninfected donors, albeit at a lower frequency.</td>
</tr>
</tbody>
</table>

These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 24MAY2021 | SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans | Turner J.S., et al. USA [gtopaper](#) | Immunology | **Aim:** to determine whether SARS-CoV-2 infection induces antigen-specific long-lived bone marrow plasma cells (BMPCs) in humans.
Methods:
Blood samples were collected approximately 1 month after onset of symptoms from 77 SARS-CoV-2 convalescent volunteers (49% female, 51% male, median age 49), the majority of whom had expere-nced mild illness (7.8% hospitalized).
Follow-up blood samples were collected three times at approximately 3-month intervals.
Additionally, bone marrow aspirates were collected from 18 of the participants 7 to 8 months after infection and from 11 healthy volunteers with no history of SARS-CoV-2 infection or vaccination.
Findings:
> In patients who experienced mild infections (n=77), serum anti-SARS-CoV-2 spike (S) antibodies decline rapidly in the first 4 months after infection and then more gradually over the following 7 months, remaining detectable at least 11 months after infection.
> Anti-S antibody titers correlated with the frequency of S-specific BMPCs obtained from bone marrow aspirates of 18 SARS-CoV-2 convalescent patients 7 to 8 months after infection. S-specific BMPCs were not detected in aspirates from 11 healthy subjects with no history of SARS-CoV-2 infection.
> S-binding BMPCs are quiescent, indicating that they are part of a long-lived compartment. Consistently, circulating resting memory B cells directed against the S protein were detected in the convalescent individuals.
SARS-CoV-2 infection induces a robust antigen-specific, long-lived humoral immune response in humans. |
| Clin Microbiol Infect. 23MAY2021 | Clinical outcomes in COVID-19 patients infected with different SARS-cov-2 variants in marseille, France | Dao T.L., et al. France [gtopaper](#) | Virology | **Clinical and epidemiological aspects associated with different predominant lineages circulating in Marseille from March 2020 to January 2021.**
Methods
> Single-center retrospective cohort study
> Characteristics of patients infected with four different SARS-CoV-2 variants were documented from medical files.
Outcome: occurrence of clinical failure, defined as hospitalization (for outpatients), transfer to the intensive-care unit (inpatients), death (all)
Findings
> 254 patients were infected with clade 20A (20AS), 85 with Marseille-1 (M1V), 190 with Marseille-4 (M4V) and 211 with N501Y (N501YV) variants.
(i) 20AS presented a bell-shaped epidemiological curve and nearly disappeared around May 2020.
(ii) M1V reached a very weak peak, then disappeared after a month-and-a-half.
(iii) M4V appeared in July presented an atypical wave form during seven months.
(iv) N501YV was only recently appeared.
> As compared to 20AS, patients infected with M1V were less likely to report dyspnoea (aOR=0.50, p=0.04), rhinitis (aOR=0.57, p=0.04) and to be hospitalised (aOR=0.22, p=0.002).
> Patients infected with M4V were more likely to report fever than those with 20AS and M1V (aOR=2.49, p<0.0001 and aOR=2.30, p=0.007, respectively) and to be hospitalised than those with M1V (aOR=4.81, p=0.003).
> Patients infected with N501YV reported lower rate of rhinitis (aOR=0.50, p=0.001) and anosmia (aOR=0.57, p=0.02), as compared to those infected with 20AS.
> A lower rate of hospitalisation associated with N501YV infection as compared to 20AS and M4V (aOR=0.33, p=0.0001 and aOR=0.27, p=0.0001, respectively).
Conclusions
The four lineages have presentations which differ from one other, epidemiologically and clinically. This supports SARS-CoV-2 genomic surveillance through next-generation sequencing. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> Multicentre, prospective, observational cohort study in adults (aged 18 years or older) with suspected or confirmed COVID-19 infection referred to intensive care or high-care units in 64 hospitals in ten African countries (ie, Egypt, Ethiopia, Ghana, Kenya, Libya, Malawi, Mozambique, Niger, Nigeria, and South Africa). ClinicalTrials.gov, NCT04367207.
Primary outcome: in-hospital mortality censored at 30 days.

Methods:
Retrospective cohort study utilizing deidentified chargemaster data from 297 hospitals across 40 US states on patients hospitalized with COVID-19 February 15–June 09, 2020. Multivariable logistic regression was used to measure risk factor associations with 30-day readmission and in-hospital mortality.

Findings:
> Among 29,659 patients, 1,070 (3.6%) were readmitted.
> Readmitted patients were more likely to have diabetes, hypertension, cardiovascular disease (CVD), chronic kidney disease (CKD) vs those not readmitted and to present on first admission with acute kidney injury (15.6% vs. 9.2%), congestive heart failure (6.4% vs. 2.4%), and cardiomyopathy (2.1% vs. 0.8%).
> Higher odds of readmission were observed in patients age >60 vs. 18-40 (odds ratio [OR]=1.92), and admitted in the Northeast vs. West (OR=1.43) or South (OR=1.28).
> Comorbidities including diabetes (OR=1.34), CVD (OR=1.46), CKD stage 1-5 (OR=1.51) and stage 5 (OR=2.27) were associated with higher odds of readmission.
> 12.3% of readmitted patients died during second hospitalization. Readmission was associated with certain comorbidities and acute conditions during first hospitalization.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science 20MAY2021 | Face masks effectively limit the probability of SARS-CoV-2 transmission | Cheng Y., et al. USA [gotopaper](#) | Public Health / Epidemiology | **Aim:** to develop a quantitative model of airborne virus exposure that can explain these contrasting results and provide a basis for quantifying the efficacy of face masks.
Methods:
The analysis was focused on respiratory particles and droplets with diameters smaller than 100 μm (traditional physical definition of aerosols).
Findings:
> Mask efficacy strongly depends on airborne virus abundance. Based on direct measurements of SARS-CoV-2 in air samples and population-level infection probabilities, the authors find that the virus abundance in most environments is sufficiently low for masks to be effective in reducing airborne transmission.
> A person typically emits a total number of about 3×10^6 particles during a 30 min period. This very large number implies that indoor environments are usually in a respiratory particle-rich regime. Surgical masks with particle collection efficiencies around ~50% cannot prevent the release of millions of particles per person and their inhalation by others.
> For SARS-CoV-2, the viral load of infectious individuals can vary by orders of magnitude. The authors find that most environments and contacts are under conditions of low virus abundance (virus-limited) where surgical masks are effective at preventing virus spread.
> More advanced masks and other protective equipment are required in potentially virus-rich indoor environments including medical centers and hospitals.
> Masks are particularly effective in combination with other preventive measures like ventilation and distancing. |
Exoproteome-targeting autoantibodies can exert a wide range of functional effects such as perturbation of cell signaling (as with the case of anti-IFN-I autoantibodies11,12) and targeted killing of specific cell populations via Fc receptors (FcR) and/or complement.
Methods:
A high-throughput autoantibody (AAb) discovery technique called Rapid Extracellular Antigen Profiling (REAP)7 was used to screen the cohort.
Findings:
> COVID-19 patients exhibit dramatic increases in autoantibody reactivities compared to uninfected controls, with a high prevalence of autoantibodies against immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins.
> These autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signaling and by altering peripheral immune cell composition.
> Murine surrogates of these autoantibodies exacerbate disease severity in a mouse model of SARS-CoV-2 infection.
> Analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics and disease severity.
These findings implicate a pathological role for exoproteome-directed autoantibodies in COVID-19 with diverse impacts on immune functionality and associations with clinical outcomes. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **BMJ 19MAY2021** | Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study | Daugherty S.E., et al. USA [gotopaper](#) | Clinic | **Aim:** to evaluate the excess risk and relative hazards for developing incident clinical sequelae after the acute phase of SARS-CoV-2 infection in adults aged 18-65
Methods:
Retrospective cohort study from individuals aged 18-65 with continuous enrollment in the health plan from January 2019 to the date of a diagnosis of SARS-CoV-2 infection.
Three merged data sources from a large United States health plan: a large national administrative claims database, an outpatient laboratory testing database, and an inpatient hospital admissions database.
Findings:
> 14% of adults aged ≤65 who were infected with SARS-CoV-2 (27,074 of 193,113) had at least one new type of clinical sequelae that required medical care after the acute phase of the illness, which was 4.95% higher than in the 2020 comparator group.
> The risk for specific new sequelae attributable to SARS-CoV-2 infection after the acute phase, including chronic respiratory failure, cardiac arrhythmia, hypercoagulability, encephalopathy, peripheral neuropathy, amnesia (memory difficulty), diabetes, liver test abnormalities, myocarditis, anxiety, and fatigue, was significantly greater than in the three comparator groups (2020, 2019, and viral lower respiratory tract illness groups).
> Significant risk differences because of SARS-CoV-2 infection ranged from 0.02 to 2.26 per 100 people, and hazard ratios ranged from 1.24 to 25.65 compared with the 2020 comparator group.
> Individuals who were older, had pre-existing conditions, and were admitted to hospital because of covid-19 were at greatest excess risk.
> Younger adults (aged ≤50), those with no pre-existing conditions, or those not admitted to hospital for covid-19 also had an increased risk of developing new clinical sequelae. |
| **JAMA Netw Open 19MAY2021** | Assessment of the Association of Vitamin D Level With SARS-CoV-2 Seropositivity Among Working-Age Adults | Li Y., et al. USA [gotopaper](#) | Public Health / Epidemiology | **Aim:** to examine whether low levels of vitamin D (<20 ng/mL or < 30 ng/mL) are associated with SARS-CoV-2 seropositivity, an indicator of previous infection.
Results:
> The 18,148 individuals included in this study had test results for SARS-CoV-2 IgG in 2020 and vitamin D levels from the prepandemic and pandemic periods. Median (interquartile range) age was 47 (37-56) years, 12,170 (67.1%) were women, 900 (5.0%) were seropositive, 4,498 (24.8%) had a vitamin D level <20 ng/mL, and 10,876 (59.9%) had a vitamin D level <30 ng/mL before the pandemic.
> In multivariable models adjusting for age, sex, race/ethnicity, education, body mass index, blood pressure, smoking status, and geographical location, SARS-CoV-2 seropositivity was not associated with having a vitamin D level <20 ng/mL before (odds ratio [OR], 1.04; 95% CI, 0.88-1.22) or during (OR, 0.93; 95% CI, 0.79-1.09) the pandemic; it was also not associated with having a vitamin D level <30 ng/mL before (OR, 1.09; 95% CI, 0.93-1.27) or during (OR, 1.05; 95% CI, 0.91-1.23) the pandemic. Similar results were observed in propensity score analyses.
> SARS-CoV-2 seropositivity was associated with obesity (OR, 1.26; 95% CI, 1.08-1.46), not having a college degree (OR, 1.40; 95% CI, 1.21-1.62), and Asian (OR, 1.46; 95% CI, 1.13-1.87), Black (OR, 2.74; 95% CI, 2.25-3.34), Hispanic (OR, 2.65; 95% CI, 2.15-3.27), American Indian or Alaska Native, and Native Hawaiian or other Pacific Islander (OR, 2.01; OR, 1.54-2.62) race/ethnicity, and was inversely associated with high blood pressure (OR, 0.82; 95% CI, 0.70-0.96), smoking (OR, 0.60; 95% CI, 0.47-0.78), and residing in the US Northeast (OR, 0.75; 95% CI, 0.62-0.92) and West (OR, 0.54; 95% CI, 0.44-0.67).
Conclusions
In this cohort study, SARS-CoV-2 seropositivity was not associated with low levels of vitamin D independently of other risk factors. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Med. 18MAY2021</td>
<td>Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19</td>
<td>Ward B.J., et al. Canada gotopaper</td>
<td>Vaccines</td>
<td>Safety and immunogenicity data from the virus-like particle vaccine candidate produced by MEDICAGO. (CoVLP: NCT04450004). Methods > Phase 1 blinded, dose escalation, randomized controlled study of a virus-like particle vaccine candidate produced in plants that displays the SARS-CoV-2 spike glycoprotein > Adults (18–55 years, n = 180) receiving two intramuscular doses of CoVLP (3.75 μg, 7.5 μg, and 15 μg) 21 d apart, alone or adjuvanted with AS03 or CpG1018 or placebo. Primary outcomes: short-term tolerability/safety and immunogenicity of CoVLP formulations assessed by neutralizing antibody (NAb) and cellular responses. Findings > All formulations were well tolerated, and adverse events after vaccination were generally mild to moderate, transient and highest in the adjuvanted groups. > No CoVLP dose effect on serum NAbs, but titers increased significantly with both adjuvants. > After the second dose, NAbs in the CoVLP + AS03 groups were more than tenfold higher than titers in Coronavirus 2019 convalescent sera. > Spike protein-specific interferon-γ and interleukin-4 cellular responses were also induced.</td>
</tr>
<tr>
<td>Nature Med. 18MAY2021</td>
<td>Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection</td>
<td>Khoury D.S., et al. Australia gotopaper</td>
<td>Immunology</td>
<td>Analysis of the relationship between in vitro neutralization levels and observed protection from SARS-CoV-2 infection (data from seven current vaccines and from convalescent cohorts) Findings > The neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4–28.4%). > Estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7–13%, p = 0.0004). > Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. > Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain Conclusion Neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.</td>
</tr>
<tr>
<td>Science Immunol. 18MAY2021</td>
<td>Pharmacological activation of STING blocks SARS-CoV-2 infection</td>
<td>Minghua L., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection Methods > To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Findings > SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. > Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. > Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.</td>
</tr>
</tbody>
</table>
Table 1: Details of the Studies

<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Immunol. 18MAY2021</td>
<td>A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection</td>
<td>Humphries F., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Describe a diamidobenzimidazole compound: diABZI-4</td>
</tr>
<tr>
<td>Clin Infect Dis. 17MAY2021</td>
<td>The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data</td>
<td>Chodick G., et al. Israel gotopaper</td>
<td>Vaccines - Immunisations</td>
<td>Aim: to evaluate the effectiveness of BNT162b2 vaccine in preventing SARS-CoV-2 infection and COVID-19-related hospitalization and mortality. Primary outcome: incidence rate of a SARS-CoV-2 infection confirmed with rt-PCR, between 7 to 27 days after second dose (protection-period), as compared to days 1 to 7 after the first dose, where no protection by the vaccine is assumed (reference-period). Results Data of 1,178,597 individuals vaccinated with BNT162b2 were analyzed (mean age 47.7 years [SD=18.1], 48.4% males) of whom 872,454 (74.0%) reached the protection period. > Overall, 4514 infections occurred during the reference period compared to 728 during the protection period, yielding a weighted mean daily incidence of 54.8 per 100,000 (95%CI: 26.1-115.0 per 100,000) and 5.4 per 100,000 (95%CI: 3.5-8.4 per 100,000), respectively. > The vaccine effectiveness in preventing infection was 90% (95%CI: 79%-95%) and 94% (95%CI:88%-97%) against COVID-19. > Among immunosuppressed patients, vaccine effectiveness against infection was 71% (95%CI:37%-87%). > The adjusted hazard ratios for hospitalization in those infected were 0.82 (95%CI:0.36-1.88), 0.45 (95%CI:0.23-0.90), and 0.56 (95%CI:0.36-0.89) in the age groups 16-44, 45-64 and ≥75 , respectively. The effectiveness of the BNT162b2 vaccine is comparable to the one reported in the phase III clinical trial.</td>
</tr>
<tr>
<td>Blood 14MAY2021</td>
<td>Frequency of positive anti-PF4/polyanion antibody tests after COVID-19 vaccination with ChAdOx1 nCoV-19 and BNT162b2</td>
<td>Thiele T., et al. Germany gotopaper</td>
<td>Vaccines</td>
<td>- Vaccination with COVID-19 vaccine ChAdOx1 nCoV-19 (AstraZeneca) has been associated with rare vaccine-induced immune thrombotic thrombocytopenia (VITT). - Affected patients test strongly positive in PF4/polyanion enzyme immunoassays (EIAs) and serum-induced platelet activation is maximal in the presence of PF4. Aim: to determine the frequency of anti-PF4/polyanion antibodies in healthy vaccinees and to assess if PF4/polyanion EIA-positive sera exhibit platelet-activating properties after vaccination with ChAdOx1 nCoV-19 (n=138) or BNT162b2 (BioNTech/Pfizer; n=143). > 19 of 281 participants tested positive for anti-PF4/polyanion antibodies post-vaccination (All: 6.8% [95%CI 4.4-10.3]; BNT162b2: 5.6% [95%CI, 2.9-10.7]; ChAdOx1 nCoV-19: 8.0% [95%CI, 4.5-13.7%]). > Optical densities were mostly low (between 0.5-1.0 units; reference range, <0.50) and none of the PF4/polyanion EIA-positive samples induced platelet activation in the presence of PF4. Positive PF4/polyanion EIAs can occur after SARS-CoV-2 vaccination with both mRNA- and adenoviral vector-based vaccines, but the majority of these antibodies likely have minor (if any) clinical relevance. Pathogenic platelet-activating antibodies that cause VITT do not occur commonly following vaccination.</td>
</tr>
</tbody>
</table>

Findings
- diABZ-4 activates STING and is highly effective in limiting SARS-CoV-2 replication in cells and animals.
- diABZI-4 inhibited SARS-CoV-2 replication in lung epithelial cells.
- Administration of diABZI-4 intranasally before or even after virus infection conferred complete protection from severe respiratory disease in K18-ACE2-transgenic mice infected with SARS-CoV-2.
- Intranasal delivery of diABZI-4 induced a rapid short-lived activation of STING, leading to transient proinflammatory cytokine production and lymphocyte activation in the lung associated with inhibition of viral replication.

Our study supports the use of diABZI-4 as a host-directed therapy which mobilizes antiviral defenses for the treatment and prevention of COVID-19.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
> multicentre prospective observational cohort study of patients with COVID-19 admitted to 247 acute hospitals in England, Scotland, and Wales during the first wave of the pandemic (between March 9 and Aug 2, 2020).
> A three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and in-hospital mortality was performed.
The primary outcome was weekly in-hospital mortality at 28 days.
Findings:
> 80,713 patients were recruited, of whom 63,972 were eligible and included in the study.
> Unadjusted weekly in-hospital mortality declined from 32.3% in March 9 to April 26, 2020, to 16.4% in June 15 to Aug 2, 2020.
> Reductions in mortality were observed in all age groups, in all ethnic groups, for both sexes, and in patients with and without comorbidities.
> After adjustment, there was a 32% reduction in the risk of mortality per 7-week period (odds ratio [OR] 0.68).
> The higher proportions of patients with severe disease and comorbidities earlier in the first wave (March and April) than in June and July accounted for 10.2% of this reduction.
> Changes in respiratory support and use of steroids accounted for 22.2%, OR 0.95 (0.94–0.95) of the reduction in in-hospital mortality.
A significant reduction in in-hospital mortality was associated with differences in respiratory support and critical care use, which could partly reflect accrual of clinical knowledge. |
Primary outcome: 28-day mortality, analysed on an intention-to-treat basis.
Findings:
> 115,587 (71%) of 162,877 patients enrolled in RECOVERY were assigned to either the convalescent plasma group or the usual care group (May 28, 2020, and Jan 15, 2021).
> There was no significant difference in 28-day mortality between the two groups: 13,991 (24%) of 57,951 patients in the convalescent plasma group and 14,082 (24%) of 57,633 patients in the usual care group died within 28 days (rate ratio 1.00, 95% CI 0.93–1.07; p=0.95).
> The 28-day mortality rate ratio was similar in all pre-specified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation.
> Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (38,322 (66%) patients in the convalescent plasma group vs 38,222 (66%) patients in the usual care group; rate ratio 0.99, 95% CI 0.94–1.03; p=0.57).
> Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (15,682 (29%) of 54,931 patients in the convalescent plasma group vs 15,682 (29%) of 54,487 patients in the usual care group; rate ratio 0.99, 95% CI 0.93–1.05; p=0.79).
In patients hospitalised with COVID-19, high titre convalescent plasma did not improve survival or other pre-specified clinical outcomes. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMJ 13MAY2021</td>
<td>Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines against confirmed covid-19 symptoms (including the UK variant of concern B.1.1.7), admissions to hospital, and deaths.</td>
<td>Lopez-Bernal, J., et al. UK https://doi.org/10.1136/bmj.n108</td>
<td>Vaccines - Immunisations</td>
<td>Real world effectiveness of the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S vaccines against confirmed covid-19 symptoms (including the UK variant of concern B.1.1.7), admissions to hospital, and deaths.</td>
</tr>
</tbody>
</table>

Methods

> Case-control study.

> 156,930 adults aged 70 years and older who reported symptoms of covid-19 between 8 December 2020 and 19 February 2021 and were successfully linked to vaccination data in the National Immunisation Management System.

> Interventions! Vaccination with BNT162b2 or ChAdOx1-S.

Main outcome PCR confirmed symptomatic SARS-CoV-2 infections, admissions to hospital for covid-19, and deaths with covid-19.

Findings

> Participants aged 80 years and older vaccinated with BNT162b2 before 4 January 2021 had a higher odds of testing positive for covid-19 in the first nine days after vaccination (odds ratio up to 1.48, 95% confidence interval 1.23 to 1.77). Vaccine effects were noted 10 to 13 days after vaccination, reaching a vaccine effectiveness of 70% (95% confidence interval 59% to 87%).

> With ChAdOx1-S, effects were seen from 14 to 20 days after vaccination, reaching an effectiveness of 60% (41% to 73%) from 28 to 34 days, increasing to 73% (27% to 90%) from day 35 onwards.

> Further 43% (33% to 52%) reduced risk of emergency hospital admission and 51% (37% to 62%) reduced risk of death was observed in those who had received one dose of BNT162b2.

> Participants who had received one dose of ChAdOx1-S had a further 37% (3% to 59%) reduced risk of emergency hospital admission. Follow-up was insufficient to assess the effect of ChAdOx1-S on mortality.

> Combined with the effect against symptomatic disease, a single dose of either vaccine was about 80% effective at preventing admission to hospital with covid-19 and a single dose of BNT162b2 was 85% effective at preventing death with covid-19.

Conclusion

Vaccination with either one dose of BNT162b2 or ChAdOx1-S was associated with a significant reduction in symptomatic covid-19 in older adults, and with further protection against severe disease. Both vaccines showed similar effects. Protection was maintained for the duration of follow-up (>6 weeks). A second dose of BNT162b2 was associated with further protection against symptomatic disease. A clear effect of the vaccines against the B.1.1.7 variant was found.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
> Estimation of the secondary attack rate (SAR) in app-notified individuals based on a probabilistic model for how many positive test results would be expected among those recently notified.
> Evaluation of the number of cases averted by the app based on notifications and SAR, using a mechanistic probabilistic modelling approach.
> Evaluation of the number of cases averted by the app using a stratified statistical approach, allowing to address confounding factors.
Findings: 16.5 million users (28% of the total population) sent approximately 1.7 million exposure notifications, 4.4 per index case consenting to contact tracing.
> SAR was estimated at 6.0%, comparable to the SAR for manually traced close contacts.
> Modelling based on the notifications and SAR gave 284,000 (108,000-450,000) cases averted by the app.
> Statistical comparison of matched neighbouring local authorities gave 594,000 (317,000-914,000) cases averted by the app.
> For every percentage point increase in app users, the number of cases can be reduced by 0.8% (modelling) or 2.3% (statistical analysis).
Limitation: It is an observational study: no randomized or systematic experiment resulted in different app uptake in different places.
Conclusion: These findings provide evidence for continued development and deployment of privacy-preserving contact tracing apps in populations that are awaiting full protection from vaccines.
Digital tracing is best understood as part of a system of non-pharmaceutical interventions, not in isolation. Also, it is not a substitute for manual tracing, both being valuable. |
Methods:
> Multinational network cohort study.
> Data collected from Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea.
> 303,264 patients admitted to hospital with covid-19 from January 2020 to December 2020
Findings:
> Of the 303,264 patients included, 290,131 were from the US, 7,599 from South Korea, 5,230 from Spain, and 304 from China.
> 3455 drugs were identified.
> Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China).
> Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids.
> Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year.
> The use of dexamethasone and corticosteroids increased steadily during 2020. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
- GCS-NeuroCOVID all COVID-19 – hospitalized patients with COVID-19 with and without neurological manifestations (n = 3055; 57% men, mean age 59.9 years [95% CI, 59.3-60.6]).
- GCS-NeuroCOVID COVID-19 neurological cohort – patients hospitalized with COVID-19 who had confirmed neurological manifestations (n = 475; 55% men, and the mean age 62.6 [61.1-64.1]).
- ENERGY cohort – patients with COVID-19 who received formal neurological consultation. (n = 214; 62% men, mean age 67 years [52-78]).
Results
> A total of 3083 of 3743 patients (82%) across cohorts had any neurological manifestation (self-reported neurological symptoms and/or clinically captured neurological sign and/or syndrome).
> The most common self-reported symptoms included headache (1385 of 3732 patients [37%]) and anosmia or ageusia (977 of 3700 patients [26%]).
> The most prevalent neurological signs and/or syndromes were acute encephalopathy (1845 of 3740 patients [49%]), coma (649 of 3737 patients [17%]), and stroke (222 of 3737 patients [6%]), while meningitis and/or encephalitis were rare (19 of 3741 patients [0.5%]).
> Presence of clinically captured neurologic signs and/or syndromes was associated with increased risk of in-hospital death (adjusted odds ratio [aOR], 5.99; 95% CI, 4.33-8.28) after adjusting for study site, age, sex, race, and ethnicity.
> Presence of preexisting neurological disorders (aOR, 2.23; 95% CI, 1.80-2.75) was associated with increased risk of developing neurological signs and/or syndromes with COVID-19.
Conclusions
In this multicohort study, neurological manifestations were prevalent among patients hospitalized with COVID-19 and were associated with higher in-hospital mortality. |
| Nature Med. 11MAY2021 | Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival | Dispinseri S., et al. Italy gotopaper | Immunology | Antibody responses of 162 COVID-19 symptomatic patients in the COVID-BioB cohort followed longitudinally for up to eight months from symptom onset to find SARS-CoV-2 neutralization, as well as antibodies either recognizing SARS-CoV-2 spike antigens and nucleoprotein, or specific for S2 antigen of seasonal beta-coronaviruses and hemagglutinin of the H1N1 flu virus.
Findings
> The presence of neutralizing antibodies within the first weeks from symptoms onset correlates with time to a negative swab result (p = 0.002). The lack of neutralizing capacity correlates with an increased risk of a fatal outcome (p = 0.008).
> Neutralizing antibody titers progressively drop after 5–8 weeks but are still detectable up to 8 months in the majority of recovered patients regardless of age or co-morbidities, with IgG to spike antigens providing the best correlate of neutralization.
> Antibody responses to seasonal coronaviruses are temporarily boosted, and parallel those to SARS-CoV-2 without dampening the specific response or worsening disease progression.
Conclusions
Compromised immune responses to the SARS-CoV-2 spike to be a major trait of COVID-19 patients with critical conditions, and thereby inform on the planning of COVID-19 patient care and therapy prioritization. |
We aimed to describe trends in adverse outcomes among patients who tested positive for SARS-CoV-2 between February and September 2020 within a national healthcare system.

Methods
> Identified enrollees in the national U.S. Veterans Affairs healthcare system who tested positive for SARS-CoV-2 between 2/28/2020 and 9/30/2020 (n=55,952), with follow-up extending to 11/19/2020
> Determined trends over time in incidence of the following outcomes that occurred within 30 days of testing positive: hospitalization, intensive care unit (ICU) admission, mechanical ventilation and death.

Findings
> Between February and July 2020, there were marked downward trends in the 30-day incidence of hospitalization (44.2% to 15.8%), ICU admission (20.3% to 5.3%), mechanical ventilation (12.7% to 2.2%), and death (12.5% to 4.4%), which subsequently plateaued between July and September 2020.
> These trends persisted after adjustment for sociodemographic characteristics, comorbid conditions, documented symptoms and laboratory tests, including among subgroups of patients hospitalized, admitted to the ICU or treated with mechanical ventilation.
> From February to September, there were decreases in the use of hydroxychloroquine (56.5% to 0%), azithromycin (48.3% to 16.6%) vasopressors (20.6% to 8.7%), and dialysis (11.6% to 3.8%) and increases in the use of dexamethasone (3.4% to 53.1%), other corticosteroids (4.9% to 29.0%) and remdesivir (1.7% to 45.4%) among hospitalized patients.

The risk of adverse outcomes in SARS-CoV-2-positive patients decreased markedly between February and July, with subsequent stabilization from July to September. These trends were not explained by changes in measured baseline patient characteristics and may reflect changing treatment practices or viral pathogenicity.

We have assessed, in the longitudinal prospective French COVID-19 cohort, symptoms that persisted 6 months after admission for COVID-19.

Findings
> M6 data were available for 1137 participants (Hospitalized patients with virologically confirmed COVID-19). Median age was 61 years (IQR 51–71) and 288 (29%, 95% CI 26–32%) were admitted to intensive care unit (ICU) during the acute phase.
> 650 (68%, 95% CI 65–71%) and 639 (60%, 95% CI 57–63%) participants had at least one symptom at M3 and M6 visit, respectively, mostly fatigue, dyspnoea, joint pain and myalgia.
> At M6, 255 (24%, 95% CI 21–27%) of participants had three or more persistent symptoms.
> 125 (29%, 95% CI 25–34%) of those who initially had a professional occupation were not back to work at M6.

A fourth of individuals admitted to hospital for COVID-19 still had three or more persistent symptoms at M6. Longitudinal follow-up of individuals with severe COVID-19 is warranted to better understand the pathophysiology underlying this long-term persistence.
Journal and date

Lancet Infect Dis. 10MAY2021

Title
Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: a Danish population-based cohort study

Authors and link
Lund L.C., et al.

Field of expertise
Long Covid

Key facts

Aim: to analyze the risk of delayed complications in individuals not requiring hospital admission for COVID-19.

Methods:
Population-based cohort study using the Danish prescription, patient, and health insurance registries. All individuals with a positive or negative RT-PCR test for SARS-CoV-2 in Denmark between Feb 27 and May 31, 2020.

The outcomes of interest were delayed acute complications, chronic disease, hospital visits due to persisting symptoms, and prescription drug use.

Findings:

> 10 498 eligible individuals tested positive for SARS-CoV-2 in Denmark from Feb 27 to May 31, 2020, of whom 8983 (85·6%) were alive and not admitted to hospital 2 weeks after their positive test. The matched SARS-CoV-2-negative reference population not admitted to hospital consisted of 80 894 individuals.

> Compared with SARS-CoV-2-negative individuals, SARS-CoV-2-positive individuals were not at an increased risk of initiating new drugs (RD <0·1%) except bronchodilating agents, specifically short-acting β2-agonists (117 [1·7%] of 6935 positive individuals vs 743 [1·3%] of 57 206 negative individuals. And triptans (33 [0·4%] of 8292 vs 198 [0·3%] of 72 828.

> There was an increased risk of receiving hospital diagnoses of dyspnoea (103 [1·2%] of 8676 vs 499 [0·7%] of 76 728; RD +0·6%; RR 2·00) and venous thromboembolism (20 [0·2%] of 8785 vs 110 [0·1%] of 78 872; RD +0·1%; RR 1·77) for SARS-CoV-2-positive individuals compared with negative individuals.

> Prior event rate ratio-adjusted rate ratios of overall general practitioner visits (1·18) and outpatient hospital visits (1·10), but not hospital admission, showed increases among SARS-CoV-2-positive individuals compared with SARS-CoV-2-negative individuals.

The absolute risk of severe post-acute complications after SARS-CoV-2 infection not requiring hospital admission is low.

Journal and date

Clin Microbiol Infect. 09MAY2021

Title
Outbreak investigation of symptomatic SARS-CoV-2 VOC 202012/01-lineage B.1.1.7 infection in healthcare workers, Italy

Authors and link
Loconsole D., et al.

Field of expertise
Public Health / Epidemiology - Variants

Key facts

Aim: to describe an outbreak of SARS-CoV-2 lineage B.1.1.7 infection in three HCWs in a hospital setting; two of the HCWs were fully vaccinated (i.e., had received two doses).

Methods:
Two physicians and one nurse working on the same shift on February 20, 2021, were involved in the outbreak. Real-time PCR, antigen tests, and serological tests for the IgG anti-spike protein of SARS-CoV-2 were performed, along with whole-genome sequencing (WGS).

Findings:

> SARS-CoV-2 infection was confirmed in all three HCWs; all presented with mild symptoms of COVID-19.

> The two physicians were fully vaccinated with BNT162b2 vaccine, with the second dose administered 1 month before symptom onset. Both had high titres of IgG anti-spike antibodies at the time of diagnosis.

> WGS confirmed that all virus strains were VOC 202012/01-lineage B.1.1.7, suggesting a common source of exposure.

> Epidemiological investigation revealed that the suspected source was a SARS-CoV-2-positive patient who required endotracheal intubation due to severe COVID-19. All procedures were carried out using a full suite of personal protective equipment (PPE).

This mini-outbreak highlights some important issues about the efficacy of vaccines against transmission of SARS-CoV-2 variants, the high risk of exposure among HCWs, and the need for optimized implementation of PPE in hospitals.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Results
> Antibody response was not detected in 26 of 392 (6.6%) COVID-19 convalescent subjects.
> Over 9 months, the level of antibodies decreased by 50% but stabilized at 6 months and prevailed a protective level up to 9 months.
> No differences were found regarding IgG SARS-CoV-2 antibody levels for age, gender, and major blood types, over-time.
> COVID-19 asymptomatic subjects did not differ in antibody level overtime from subjects with mild to severe disease.
> Repeated paired IgG SARS-COV-2 antibody level analyses disclosed that over 6 and 9 months, 15.3% (9 of 59) and 15.8% (3 of 19) of subjects became SARS-COV-2 IgG seronegative, respectively, all with low antibody level at 3 months. Rate of antibody decline was not affected by age, gender, or clinical symptomatology.
> In a subgroup of recovering subjects, memory B-cell response up to 9-months post infection was undetectable in 31.8% (14/44) of subjects with no correlation to age, SARS-COV-2 antibody level, or time post-infection.
Conclusions
Majority of COVID-19 convalescent subjects develop IgG SARS-COV-2 antibody response that prevails a protective level over a period of up to 9-months. |
| Lancet Rheumatol. 07MAY2021 | Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study | Drake T.M., et al. UK gotopaper | Therapeutics | We aimed to characterise the safety of NSAIDs and identify whether pre-existing NSAID use was associated with increased severity of COVID-19 disease.
Methods
> Prospective, multicentre cohort study included patients of any age admitted to hospital with a confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19
> We used propensity score matching to further estimate effects of NSAIDS while accounting for covariate differences in populations.
Findings
> Jan 17 and Aug 10, 2020, we enrolled 78 674 patients across 255 health-care facilities in England, Scotland, and Wales. 72 179 patients had death outcomes available for matching. 40 406 (56.2%) of 71 915 were men, 31 509 (43.8%) were women.
> In this cohort, 4211 (5.8%) patients were recorded as taking systemic NSAIDs before admission to hospital.
> At hospital admission, we observed no significant differences in severity between exposure groups.
> After adjusting for explanatory variables, NSAID use was not associated with worse in-hospital mortality (matched OR 0·95, 95% CI 0·84–1·07; p=0·35), critical care admission (1·01, 0·87–1·17; p=0·89), requirement for invasive ventilation (0·96, 0·80–1·17; p=0·69), requirement for non-invasive ventilation (1·12, 0·96–1·32; p=0·14), requirement for oxygen (1·00, 0·89–1·12; p=0·97), or occurrence of acute kidney injury (1·08, 0·92–1·26; p=0·33).
NSAID use is not associated with higher mortality or increased severity of COVID-19. Policy makers should consider reviewing issued advice around NSAID prescribing and COVID-19 severity. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Sci Rep. 07MAY2021 | Incorporating false negative tests in epidemiological models for SARS-CoV-2 transmission and reconciling with seroprevalence estimates | Bhattacharyya R., et al. [India](#) | Public Health / Epidemiology | **Aims:** Estimate the number of unreported COVID-19 cases and deaths by taking into account the false negative rate of RT-PCR tests in the Delhi area.
Methods:
> Modelisation of the epidemic dynamic by an age-structured SEIR model taking into account the tests and false negatives.
> Estimation of the model parameters by a well-known stochastic algorithm.
> Model-based results are compared with data form serological surveys.
Findings: The number of Covid-19 cases and deaths in the Delhi area is dramatically underestimated.
> In July 2020, the underreporting factor was (34-53) for the number of cases, and (8-13) for the number of deaths.
> In January 2021, the underreporting factor remains (13-22) for the number of cases, and (3-7) for the number of deaths.
Limits:
> The model does not take into account false positive of PCR tests.
> Estimation of the false negative rate of PCR tests has a large impact on the estimation of the underreporting factors, limiting their accuracy.
Conclusion:
> Epidemic modeling can provide a less expensive method, with similar accuracy to large serological surveys, for estimating underreporting of Covid-19 cases.
> This model predicts a very large number of unreported deaths due to Covid-19, making the cost of achieving herd immunity by letting the epidemics run its course even higher than previously expected. |
| Clin Infect Dis. 06MAY2021 | Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated with Increased COVID-19 Risk in a Population-Based Cohort Study | Nicolete V.C., et al. [International](#) | Public Health / Epidemiology | **Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe SARS-CoV-2 infection and mortality.**
Methods
> Serological surveys in proven prior DENV infection diagnosed subjects before the coronavirus 2019 (COVID-19) pandemic
> Outcome: reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months
Findings
> Anti-DENV IgG was found in 37.0% of 1,285 cohort participants in 2019
> In 2020, 35.2% of the participants had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives reported clinical manifestations at the time of infection.
> Participants aged >60 were twice more likely to have symptomatic COVID-19 than under-five children.
> Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage.
Conclusion
Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA 06MAY2021</td>
<td>Association Between Vaccination With BNT162b2 and Incidence of Symptomatic and Asymptomatic SARS-CoV-2 Infections Among Health Care Workers</td>
<td>Angel Y., et al. Israel gotopaper</td>
<td>Vaccines</td>
<td>Importance Randomized clinical trials have provided estimates of the effectiveness of the BNT162b2 vaccine against symptomatic SARS-CoV-2 infection, but its effect on asymptomatic infections remains unclear. Association of vaccination with the Pfizer-BioNTech BNT162b2 vaccine with symptomatic and asymptomatic SARS-CoV-2 infections among health care workers. Methods > Single-center, retrospective cohort study (Tel Aviv, Israel). > Data collected on symptomatic and asymptomatic SARS-CoV-2 infections confirmed via PCR tests in HCW undergoing regular screening with nasopharyngeal swabs > Comparison of the incidence of infection between fully vaccinated and unvaccinated participants Primary outcome IRR for symptomatic and asymptomatic SARS-CoV-2 infection of fully vaccinated vs unvaccinated HCW Findings > 6710 health care workers followed up for a median period of 63 days > 5953 health care workers (88.7%) received at least 1 dose of the BNT162b2 vaccine, 5517 (82.2%) received 2 doses, and 757 (11.3%) were not vaccinated > Symptomatic SARS-CoV-2 infection occurred in 8 fully vaccinated HCW and 38 unvaccinated HCW (incidence rate, 4.7 vs 149.8 per 100 000 person-days) > Asymptomatic SARS-CoV-2 infection occurred in 19 fully vaccinated HCW and 17 unvaccinated HCW (incidence rate, 11.3 vs 67.0 per 100 000 person-days, respectively) Conclusions Receipt of the BNT162b2 vaccine compared with no vaccine was associated with a significantly lower incidence of symptomatic and asymptomatic SARS-CoV-2 infection more than 7 days after the second dose.</td>
</tr>
<tr>
<td>Clin Infect Dis. 05MAY2021</td>
<td>SARS-CoV-2 RNAemia predicts clinical deterioration and extrapulmonary complications from COVID-19</td>
<td>Ram-Mohan N., et al. USA gotopaper</td>
<td>Clinic</td>
<td>Aim: to characterise relationships between SARS-CoV-2 RNAemia and disease severity, clinical deterioration, and specific extrapulmonary complications (EPCs). RNAemia was quantified by quantitative (qPCR) and digital (dPCR) PCR. > 23.0% (44/191) of SARS-CoV-2 positive patients had viral RNA detected in plasma by dPCR, compared to 1.4% (2/147) by qPCR. > Most patients with serial measurements had undetectable RNAemia within 10 days of symptom onset, reached maximum clinical severity within 16 days, and symptom resolution within 33 days. > Initially RNAaemic patients were more likely to manifest severe disease (OR 6.72 [95% CI, 2.45 – 19.79]), worsening of disease severity (OR 2.43 [95% CI, 1.07 – 5.38]), and EPCs (OR 2.81 [95% CI, 1.26 – 6.36]). RNA load correlated with maximum severity (r = 0.47 [95% CI, 0.20 – 0.67]). dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>JAMA 05MAY2021</td>
<td>Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients</td>
<td>Boyarsky B.J., et al. USA gotopaper</td>
<td>Vaccines</td>
<td>In this study, we assessed antibody response after the second dose. Methods > Transplant recipients without prior polymerase chain reaction–confirmed COVID-19 were recruited from across the US to participate in this prospective cohort > Those who completed the 2-dose SARS-CoV-2 mRNA vaccine series between December 16, 2020, and March 13, 2021, were included and followed up through April 13, 2021 Findings > Overall, of the 658 participants, 98 (15%) had measurable antibody response after dose 1 and dose 2; 301 (46%) had no antibody response after dose 1 or dose 2; and 259 (39%) had no antibody response after dose 1 but subsequent antibody response after dose 2 > Among all 658 participants, median (IQR) antibody levels after dose 2 were 2.14 U/mL (<0.4-245.8) (Roche) and 1.23 arbitrary units (0.13-6.38) (EUROIMMUN) > Among the 357 with detectable antibody after dose 2, median (IQR) antibody levels were 142.1 U/mL (9.44-250) (Roche) and 6.48 arbitrary units (3.75-8.72) (EUROIMMUN) overall; > Among the 473 receiving antimetabolites, 38 participants (8%) had antibody response after dose 1 and dose 2; 268 (57%) had no antibody response after dose 1 but subsequent antibody after dose 2. In this study of the humoral response to 2 doses of mRNA SARS-CoV-2 vaccine among solid organ transplant recipients, the majority had detectable antibody responses after the second dose, although participants without a response after dose 1 had generally low antibody levels. Poor humoral response was persistently associated with use of antimetabolite immunosuppression. Although this study demonstrates an improvement in antispike antibody responses in transplant recipients after dose 2 compared with dose 1, these data suggest that a substantial proportion of transplant recipients likely remain at risk for COVID-19 after 2 doses of mRNA vaccine.</td>
</tr>
<tr>
<td>Lancet Resp Med. 05MAY2021</td>
<td>3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study</td>
<td>Wu X., et al. China/UK gotopaper</td>
<td>Clinic</td>
<td>Aim: to describe the temporal trends in respiratory outcomes over 12 months in patients hospitalised for severe COVID-19 and to investigate the associated risk factors. Methods: Prospective, longitudinal, cohort study, patients admitted to hospital for severe COVID-19 who did not require mechanical ventilation were prospectively followed up at 3 months, 6 months, 9 months, and 12 months after discharge from Renmin Hospital of Wuhan University, Wuhan, China. Patients with a history of hypertension; diabetes; cardiovascular disease; cancer; and chronic lung disease, including asthma or chronic obstructive pulmonary disease; or a history of smoking were excluded. >135 eligible patients, 83 (61%) patients participated in this study. Findings: >The median age of participants was 60 years (IQR 52–66). Temporal improvement in pulmonary physiology and exercise capacity was observed in most patients; however, persistent physiological and radiographic abnormalities remained in some patients with COVID-19 at 12 months after discharge. > A significant reduction in DLCO over the study period was observed, with a median of 77% of predicted (IQR 67–87) at 3 months, 76% of predicted (68–90) at 6 months, and 88% of predicted (78–101) at 12 months after discharge. >At 12 months after discharge, radiological changes persisted in 20 (24%) patients. >Multivariate logistic regression showed increasing odds of impaired DLCO associated with female sex (odds ratio 8·61) and radiological abnormalities were associated with peak HRCT pneumonia scores during hospitalisation (1·36). In most patients who recovered from severe COVID-19, dyspnoea scores and exercise capacity improved over time.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Nature Med. 05MAY2021 | Delayed production of neutralizing antibodies correlates with fatal COVID-19 | Lucas C., et al. USA gotopaper | Immunology | **Aim:** to study the exact features of antibody responses that govern COVID-19 disease outcomes, analysing the nature of antibody responses in disease severity and mortality in 229 Covid-19 patients.
> A correlation between anti-spike (S) IgG levels, length of hospitalization and clinical parameters associated with worse clinical progression was observed. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent.
> Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors.
> Delayed seroconversion kinetics correlated with impaired viral control in deceased patients.
> Sera from 85% of patients displayed some neutralization capacity during their disease course, but NAb generation before 14 d of disease onset emerged as a key factor for recovery.
These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but rather with the delayed kinetics of NAb production. |
| Lancet 05MAY2021 | Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data | Haas E.J., et al. Israel gotopaper | Vaccines | **Real-world effectiveness of two doses of BNT162b2 against a range of SARS-CoV-2 outcomes and to evaluate the nationwide public-health impact following the widespread introduction of the vaccine.**
Methods
> National surveillance data from the first 4 months of the nationwide vaccination campaign to ascertain:
(i) incident cases of laboratory-confirmed SARS-CoV-2 infections
(ii) vaccine uptake in residents of Israel aged 16 years and older.
> Vaccine effectiveness against SARS-CoV-2 outcomes was calculated on the basis of incidence rates in fully vaccinated individuals compared with rates in unvaccinated individuals
Findings
> By April 3, 2021, 4,714,932 (72.1%) of 6,538,911 people aged 16 years and older were fully vaccinated with two doses of BNT162b2.
> Vaccine effectiveness at 7 days or longer after the second dose were:
(i) 95.3% against SARS-CoV-2 infection,
(ii) 91.5% against asymptomatic SARS-CoV-2 infection,
(iii) 97.0% against symptomatic COVID-19,
(iv) 97.2% against COVID-19-related hospitalisation
(v) 97.5% against severe or critical COVID-19-related hospitalisation
(vi) 96.7% against COVID-19-related death.
> In all age groups, as vaccine coverage increased, the incidence of SARS-CoV-2 outcomes declined.
> 8006 of 8472 samples tested showed a spike gene target failure, giving an estimated prevalence of the B.1.1.7 variant of 94.5% among SARS-CoV-2 infections.
Conclusions
Two doses of BNT162b2 are highly effective across all age groups in preventing symptomatic and asymptomatic SARS-CoV-2 infections and COVID-19-related hospitalisations, severe disease, and death, including those caused by the B.1.1.7 SARS-CoV-2 variant. There were marked and sustained declines in SARS-CoV-2 incidence corresponding to increasing vaccine coverage. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods
> Phase 2a–b trial (South Africa),
> Population: HIV− or HIV + in a stable condition. Randomization 1:1 ratio, two doses of either NVX-CoV2373 vaccine (5 μg of recombinant spike protein with 50 μg of Matrix-M1 adjuvant) or placebo.
Primary end points: Safety and vaccine efficacy against laboratory-confirmed symptomatic Covid-19 at ≥7 days after the second dose
Findings
> 4387 participants receiving at least 1 injection of vaccine or placebo.
> 30% of the participants were seropositive for SARS-CoV-2 at baseline.
> Among 2684 baseline seronegative participants (94% HIV-negative and 6% HIV-positive), predominantly mild-to-moderate Covid-19 developed in 15 participants in the vaccine group and in 29 in the placebo group (vaccine efficacy, 49.4%; 95% CI, 6.1 to 72.8).
> Vaccine efficacy among HIV-negative participants was 60.1% (95% CI, 19.9 to 80.1).
> Of 41 sequenced isolates, 38 (92.7%) were the B.1.351 variant.
> Post hoc vaccine efficacy against B.1.351 was 51.0% (95% CI, −0.6 to 76.2) among the HIV-negative participants.
> Preliminary local and systemic reactogenicity events were more common in the vaccine group; serious adverse events were rare in both groups.
Conclusions
The NVX-CoV2373 vaccine was efficacious in preventing Covid-19, with higher vaccine efficacy observed among HIV-negative participants. Most infections were caused by the B.1.351 variant. |

| NEJM 05MAY2021 | Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants | Abu-Raddad L.J., Chemaitelly H. Qatar [gotopaper](#) | Vaccines | Context
Qatar launched a mass immunization campaign with BNT16b2 vaccine on December 21, 2020. Vaccination scale-up occurred during Qatar’s 2nd and 3rd waves of SARS-CoV-2 infections, triggered by expansion of B.1.1.7 and B.1.351 variants. Viral genome sequencing (Feb 23 to March 18) indicated that 50.0% of cases of Covid-19 in Qatar were caused by B.1.351 and 44.5% by B.1.1.7. Nearly all cases in which virus was sequenced after March 7 were caused by either B.1.351 or B.1.1.7.
Aim: Evaluation of BNT162b2 vaccine effectiveness
Methodology
(i) Test-negative case–control study design
(ii) Cohort study design by comparing the incidence of infection among vaccinated persons with the incidence in the national cohort of persons who were antibody-negative
Findings
> Effectiveness of the vaccine against any documented infection with B.1.1.7 variant: 89.5% (95% CI), 85.9 to 92.3) at ≥14 days after dose 2
> Effectiveness against any documented infection with the B.1.351 variant: 75.0% (95% CI, 70.5 to 78.9).
> Vaccine effectiveness against severe, critical, or fatal disease due to infection with any SARS-CoV-2 (with B.1.1.7 and B.1.351 variants being predominant within Qatar): 97.4% (95% CI, 92.2 to 99.5)
> Vaccine effectiveness within the cohort 87.0% (95% CI, 81.8 to 90.7) against the B.1.1.7 variant and 72.1% (95% CI, 66.4 to 76.8) against the B.1.351 variant.
Conclusions
The BNT162b2 vaccine was effective against infection and disease in the population of Qatar, despite the B.1.1.7 and B.1.351 variants being predominant within the country.
> Vaccine effectiveness against the B.1.351 variant was approximately 20% lower than the effectiveness (>90%) reported in the clinical trial and in real-world conditions in Israel and the United States.
> The reduced protection against infection with the B.1.351 variant did not seem to translate into poor protection against the most severe forms of infection (greater than 90%)
Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection

Authors and link: Diao B., et al. China gotopaper

Field of expertise: Clinics

Key facts

Methods
- Retrospective analysis of clinical parameters from 85 patients with laboratory-confirmed coronavirus disease 2019 (COVID-19); moreover, kidney histopathology from six additional COVID-19 patients with post-mortem examinations was performed.

Findings
- We find that 27% (23/85) of patients exhibited AKI. The elderly patients and cases with comorbidities (hypertension and heart failure) are more prone to develop AKI.
- Haematoxylin & eosin staining shows that the kidneys from COVID-19 autopsies have moderate to severe tubular damage.
- Immunohistochemistry shows nucleocapsid and spike protein deposits in the tubules, and immunofluorescence double staining shows that both antigens are restricted to the angiotensin converting enzyme-II-positive tubules.
- In situ hybridization assays illustrate that viral RNA accumulates in tubules.
- SARS-CoV-2 infection triggers the expression of hypoxic damage-associated molecules, including DP2 and prostaglandin D synthase in infected tubules. Moreover, it enhances CD68+ macrophages infiltration into the tubulointerstitium, and complement C5b-9 deposition on tubules is also observed.

These results suggest that SARS-CoV-2 directly infects human kidney to mediate tubular pathogenesis and AKI.

Antibody response to mRNA SARS-CoV-2 vaccine among kidney transplant recipients – Prospective cohort study

Authors and link: Rozen-Zvi, B., et al. Israel gotopaper

Field of expertise: Vaccines

Aim: To assess rates of antibody response to mRNA SARS-CoV-2 vaccine among kidney transplant recipients, and to identify factors associated with reduced immunogenicity.

Methods
- Prospective cohort study including consecutive kidney transplant recipients in a single referral transplant center.
- Anti-spike (anti-S) antibodies test 2-4 weeks following second vaccine dose.

Primary outcome: rate of seropositivity.

Findings:
- 308 kidney transplant recipients included, only 112 (36.4%) tested positive for anti-S antibodies 2-4 weeks after receiving the second dose of BNT162b2 vaccine.
- Median antibody titers: was 15.5 AU/mL
- Factors associated with antibody response:
 1. higher estimated glomerular filtration rate (eGFR) (odds ratio [OR] 1.025 per ml/min/1.73m², 95% confidence interval [CI] 1.014 - 1.037, p<0.001),
 2. lower mycophenolic acid dose (OR 2.347 per 360 mg decrease, 95% CI 1.782 - 3.089, p<0.001),
 3. younger age (OR 1.032 per year decrease, 95% CI 1.015 - 1.05, p<0.001)
 4. lower calcineurin inhibitors (CNI) blood level (OR 1.987, 95% CI 1.146 - 3.443, p=0.014).
- No serious adverse events to the vaccine were reported.

Conclusions: Kidney transplant recipients demonstrated inadequate antibody response to mRNA SARS-CoV-2 vaccination. Immunosuppression level was a significant factor in this response.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Lancet 01MAY2021** | **Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial** | RECOVERY Collaborative Group UK gotopaper | Therapeutics | **Aim:** to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation.
Methods: Randomised, controlled, open-label, platform trial assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at an IV dose of 400 mg–800 mg (depending on weight). The primary outcome was 28-day mortality, assessed in the intention-to-treat population.
Findings: > 4116 adults of 21,550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. > Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0.85; 95% CI 0.76–0.94; p=0.0028). > Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1.22; 1.12–1.33; p=0.0001). > Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0.84; 95% CI 0.77–0.92; p<0.0001). In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. | | |
| **JAMA 30APR2021** | **US Case Reports of Cerebral Venous Sinus Thrombosis With Thrombocytopenia After Ad26.COV2.S Vaccination, March 2 to April 21, 2021** | See L., et al. USA gotopaper | Vaccines | **Aim:** To describe reports of CVST with thrombocytopenia following Ad26.COV2.S vaccine receipt.
Methods Case series of 12 US patients with CVST and thrombocytopenia following use of Ad26.COV2.S vaccine under EUA reported to the Vaccine Adverse Event Reporting System (VAERS) from March 2 to April 21, 2021 (with follow-up reported through April 21, 2021).
Main Outcomes and Measures: Clinical course, imaging, laboratory tests, and outcomes after CVST diagnosis obtained from VAERS reports, medical record review, and discussion with clinicians.
Findings > Patients characteristics: (i) age: 18 to younger than 60 years (ii) all White women.
(iii) seven patients had at least 1 CVST risk factor, including obesity (n = 6), hypothyroidism (n = 1), and oral contraceptive use (n = 1); none had documented prior heparin exposure. > Time from Ad26.COV2.S vaccination to symptom onset: 6 to 15 days. > 11 patients initially presented with headache; 1 patient initially presented with back pain and later developed headache. > Of the 12 patients with CVST, 7 also had intracerebral hemorrhage; 8 had non-CVST thromboses. > After diagnosis of CVST, 6 patients initially received heparin treatment. > Platelet nadir ranged from 9 \times 103/µL to 127 \times 103/µL. All 11 patients tested for the heparin-platelet factor 4 HIT antibody by enzyme-linked immunosorbent assay (ELISA) screening had positive results. > All patients were hospitalized (10 in an intensive care unit [ICU]). As of April 21, 2021, outcomes were death (n = 3), continued ICU care (n = 3), continued non-ICU hospitalization (n = 2), and discharged home (n = 4).
Conclusions The initial 12 US cases of CVST with thrombocytopenia after Ad26.COV2.S vaccination represent serious events. | | |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science 30APR2021 | Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose | Reynolds C.J., et al. UK | Vaccines | **Aim**: to investigated if single dose vaccination, with or without prior infection, confers cross protective immunity to variants.
- Analysis of T and B cell responses after first dose vaccination with the Pfizer/BioNTech mRNA vaccine BNT162b2 in healthcare workers (HCW) followed longitudinally, with or without prior Wuhan-Hu-1 SARS-CoV-2 infection.
> After one dose, individuals with prior infection showed enhanced T cell immunity, antibody secreting memory B cell response to spike and neutralizing antibodies effective against B.1.1.7 and B.1.351.
> By comparison, HCW receiving one vaccine dose without prior infection showed reduced immunity against variants.
> B.1.1.7 and B.1.351 spike mutations resulted in increased, abrogated or unchanged T cell responses depending on human leukocyte antigen (HLA) polymorphisms.
Single dose vaccination with BNT162b2 in the context of prior infection with a heterologous variant substantially enhances neutralizing antibody responses against variants. |
Methods
- Observational cohort study of adults (aged ≥18 years) who had at least 1 year of continuous registration with primary care practices in England at the start of each study period (3 waves).
- Multivariable Cox regression was used to examine ethnic differences in the outcomes of interest. Models were adjusted for age, sex, deprivation, clinical factors and comorbidities, and household size, with stratification by geographical region.
Results
> 17 288 532 adults included: 10 877 978 (62·9%) White, 1 025 319 (5·9%) South Asian, 340 912 (2·0%) Black, 170 484 (1·0%) of mixed ethnicity, 320 788 (1·9%) of other ethnicity, and 4 553 051 (26·3%) of unknown ethnicity.
> In wave 1, the likelihood of being tested for SARS-CoV-2 infection was slightly higher in the South Asian group (adjusted hazard ratio 1·08 [95% CI 1·07–1·09]), Black group (1·08 [1·06–1·09]), and mixed ethnicity group (1·04 [1·02–1·05]) and was decreased in the other ethnicity group (0·77 [0·76–0·78]) relative to the White group.
> The risk of testing positive for SARS-CoV-2 infection was higher in the South Asian group (1·99 [1·94–2·04]), Black group (1·69 [1·62–1·77]), mixed ethnicity group (1·49 [1·39–1·59]), and other ethnicity group (1·20 [1·14–1·28]).
> Compared with the White group, the four remaining high-level ethnic groups had an increased risk of COVID-19-related hospitalisation (South Asian group 1·48 [1·41–1·55], Black group 1·78 [1·67–1·90], mixed ethnicity group 1·63 [1·45–1·83], other ethnicity group 1·54 [1·41–1·69]), COVID-19-related ICU admission (2·18 [1·92–2·48], 3·12 [2·65–3·67], 2·96 [2·63–3·37], 3·18 [2·58–3·93]), and death (1·26 [1·15–1·37], 1·51 [1·31–1·71], 1·41 [1·11–1·81], 1·22 [1·00–1·48]).
> In wave 2, the risks of hospitalisation, ICU admission, and death relative to the White group were increased in the South Asian group but attenuated for the Black group compared with these risks in wave 1.
> Disaggregation into 16 ethnicity groups showed important heterogeneity within the five broader categories.
Some minority ethnic populations in England have excess risks of testing positive for SARS-CoV-2 and of adverse COVID-19 outcomes compared with the White population, even after accounting for differences in sociodemographic, clinical, and household characteristics. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science 29APR2021 | Household COVID-19 risk and in-person schooling | J. Lessler, et al. USA https://doi.org/10.1126/science.abh2939 | Public Health / Epidemiology | **Aims:** Estimate the COVID-19 risk of infection of members of households with children attending school in person.
Methods:
> Massive online survey administered through Facebook throughout the United States (576,051 respondents with at least one child in school age); analysis adjusts for non-response and coverage bias.
> COVID-19 infection assessed through: i) reporting COVID-19-like illness (CLI; fever, cough/shortness of breath), ii) loss of taste or smell, and/or iii) positive SARS-CoV-2 test result within the previous 14 days.
> Questions on type of schooling (in-person or not, full-time or part-time), and on mitigation measures in place at school.
Findings:
> Living in a household with a child engaged in full-time in-person schooling is associated with a substantial increase in the odds reporting COVID-19-like illness (CLI), loss of taste or smell, or a positive SARS-CoV-2 test result within the previous 14 days.
> When the child is engaged in part-time schooling, the association is attenuated but still statistically significant.
> There is a negative relationship between the number of mitigation measures implemented and the risk of COVID-19 outcomes among adult household members responding to the survey.
> Daily symptom screening is associated with the greater risk reduction; mask mandates and cancelling extra-curricular activities are also associated with risk reduction.
> Limits: self-reporting; confounding factors (heterogeneities of economic and racial status)
Conclusion:
The results of this massive online survey in the US provide evidence that in-person schooling poses a risk to those living in the households of children, but that this risk can be managed through commonly implemented school-based mitigation measures. |
| Clin Infect Dis. 29APR2021 | Development and validation of the long covid symptom and impact tools, a set of patient-reported instruments constructed from patients’ lived experience | Tran V., et al. France [gotopaper](https://gotopaper.com) | Diagnostics | **Aim:** To develop and validate patient-reported instruments, based on patients’ lived experiences, for monitoring the symptoms and impact of long covid.
Design
- The long covid Symptom and Impact Tools (ST and IT) were constructed from the answers to a survey with open-ended questions to 492 patients with long COVID.
- Tool validation: adult patients with suspected or confirmed COVID-19 and symptoms >3 weeks after onset.
- Construct validity was assessed by examining the relations of the ST and IT scores with health related quality of life (EQ-5D-5L), function (PCFS, post-COVID functional scale), and perceived health (MYMOP2). Reliability was determined by a test-retest. “Patient acceptable symptomatic state” (PASS) was determined by the percentile method.
Results
> Validation involved 1022 participants (55% confirmed cases, 79% female, and 12.5% hospitalized for COVID-19).
> The long COVID ST and IT scores were strongly correlated with the EQ-5D-5L (rs = -0.45 and rs = -0.59 respectively), the PCFS (rs = -0.39 and rs = -0.55), and the MYMOP2 (rs = -0.40 and rs = -0.59).
> Reproducibility was excellent with an interclass correlation coefficient of 0.83 (95% CI 0.80-0.86) for the ST score, 0.84 (0.80-0.87) for the IT score.
> 793 (77.5%) patients reported an unacceptable symptomatic state, thereby setting the PASS for the long covid IT score at 30 (28 to 33).
The long covid ST and IT tools provide the first validated and reliable instruments for monitoring the symptoms and impact of long covid. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet HIV 29APR21</td>
<td>SARS-CoV-2 seroprevalence, and IgG concentration and pseudovirus neutralising antibody titres after infection, compared by HIV status: a matched case-control observational study</td>
<td>Spinelli A.M., et al. USA gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>We aimed to compare SARS-CoV-2 IgG seroprevalence, disease severity, and neutralising antibody activity after infection among people with and without HIV receiving care in a county hospital system over a 3-month period. Methods > In this matched case-control observational study, remnant serum samples were collected between Aug 1 and Oct 31, 2020, from all people living with HIV who underwent routine outpatient laboratory testing in a municipal health-care system Findings > 1138 samples from 955 people living with HIV and 1118 samples from 1062 people without HIV were tested. > SARS-CoV-2 IgG seroprevalence was 3·7% (95% CI 2·4 to 5·0) among people with HIV compared with 7·4% (5·7 to 9·2) among people without HIV (adjusted odds ratio 0·50, 95% CI 0·30 to 0·83). > Among 31 people with HIV and 70 people without HIV who had evidence of past infection, the odds of severe COVID-19 were 5·52 (95% CI 1·01 to 64·48) times higher among people living with HIV. > Adjusting for time since PCR-confirmed infection, SARS-CoV-2 IgG concentrations were lower (percentage change −53%, 95% CI −4 to −76), pseudovirus neutralising antibody titres were lower (−67%, −25 to −86), and avidity was similar (7%, −73 to 87) among people living with HIV compared with those without HIV. Although fewer infections were detected by SARS-CoV-2 IgG testing among people living with HIV than among those without HIV, people with HIV had more cases of severe COVID-19. Among people living with HIV with past SARS-CoV-2 infection, lower IgG concentrations and pseudovirus neutralising antibody titres might reflect a diminished serological response to infection, and the similar avidity could be driven by similar time since infection.</td>
</tr>
<tr>
<td>Clin Infect Dis. 29APR21</td>
<td>SARS-CoV-2 detection on self-collected saliva or anterior nasal specimens compared with healthcare personnel-collected nasopharyngeal specimens</td>
<td>Marx G.E., et al. USA gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Self-collected saliva or anterior nasal specimens (ANS) for SARS-CoV-2 detection are less invasive but the sensitivity of these specimen types has not been thoroughly evaluated. Methods > During September–November 2020, 730 adults undergoing SARS-CoV-2 testing at community testing events and homeless shelters in Denver provided self-collected saliva and ANS specimens before NPS collection and answered a short survey about symptoms and specimen preference. > Subgroup analyses included test outcomes by symptom status and culture results Findings > Sensitivity for SARS-CoV-2 detection by rRT-PCR appeared higher for saliva than for ANS (85% vs. 80%) and among symptomatic participants than among those without symptoms (94% vs. 29% for saliva; 87% vs. 50% for ANS). > Among participants with culture-positive SARS-CoV-2 by any specimen type, sensitivity of saliva and ANS by rRT-PCR was 94% and 100%, respectively. > Saliva and ANS were equally preferred by participants; most would undergo NPS again despite being least preferred. Saliva was slightly more sensitive than ANS for SARS-CoV-2 detection by rRT-PCR. Both saliva and ANS reliably detected SARS-CoV-2 among participants with symptoms. Self-collected saliva and ANS offer practical advantages, are preferred by patients, and might be most useful for testing people with COVID-19 symptoms.</td>
</tr>
</tbody>
</table>
Associations between body-mass index and COVID-19 severity in 6.9 million people in England: a prospective, community-based, cohort study

Gao M., et al.

UK

Public Health / Epidemiology

Aim: to examine the association between obesity the risk of severe COVID-19, including interactions with demographic and behaviourl characteristics, type 2 diabetes, and other health conditions.

Methods:
Prospective, community-based, cohort study, using de-identified patient-level data from the QResearch database of general practices in England, UK. Data was extracted from patients aged 20 years and older who were registered at a practice eligible for inclusion in the QResearch database, and with available data on BMI.

Outcomes, as a proxy measure of severe COVID-19, were admission to hospital, admission to an intensive care unit (ICU), and death due to COVID-19.

Findings:
>Among 6 910 695 eligible individuals (mean BMI 26·78 kg/m² [SD 5·59]), 13 503 (0·20%) were admitted to hospital, 1601 (0·02%) to an ICU, and 5479 (0·08%) died after a positive test for SARS-CoV-2.

>J-shaped associations were found between BMI and admission to hospital due to COVID-19 (adjusted hazard ratio [HR] per kg/m² from the nadir at BMI of 23 kg/m² of 1·05 [95% CI 1·05–1·05]) and death (1·04 [1·04–1·05]), and a linear association across the whole BMI range with ICU admission (1·10 [1·09–1·10]).

>A significant interaction was found between BMI and age and ethnicity, with higher HR per kg/m² above BMI 23 kg/m² for younger people (20–39 years age group vs 80–100 years group) and Black people than White people (1·07 vs 1·04).

>The risk of admission to hospital and ICU due to COVID-19 associated with unit increase in BMI was slightly lower in people with type 2 diabetes, hypertension, and cardiovascular disease than in those without these morbidities.

The relative risk due to increasing BMI is particularly notable in people younger than 40 years and of Black ethnicity.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet Infect Dis. 27APR2021 | Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study | Menni C., et al. UK gotopaper | Vaccines | Aim: to investigate the safety and effectiveness of BNT162b2 and ChAdOx1 nCoV-19 vaccines in a UK community setting.
Methods: Prospective observational study examining proportion and probability of self-reported systemic and local side-effects 88 days of vaccination in individuals using the COVID Symptom Study app who received 1 or 2 doses of BNT162b2 or 1 dose of ChAdOx1 nCoV-19. Infection rates were compared in vaccinated individuals tested for SARS-CoV-2 (PCR, lateral flow tests) and in unvaccinated controls.
Findings: > Between Dec 8, and March 10, 2021, 627,383 individuals reported being vaccinated with 655,590 doses: 282,103 received one dose of BNT162b2, of whom 28,207 received a second dose, and 345,280 received one dose of ChAdOx1 nCoV-19. > Systemic side-effects were reported by 13·5% of individuals after the first dose of BNT162b2, by 22·0% after the second dose of BNT162b2, and by 33·7% after the first dose of ChAdOx1 nCoV-19. > Local side-effects were reported by 71·9% of individuals after the first dose of BNT162b2, by 68·5% after the second dose of BNT162b2, and by 58·7% after the first dose of ChAdOx1 nCoV-19. > Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. > 3106 of 103,622 vaccinated individuals and 50,340 of 464,356 unvaccinated controls tested positive for SARS-CoV-2 infection. > Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49–68) for ChAdOx1 nCoV-19 and 69% (66–72) for BNT162b2 at 21–44 days and 72% (63–79) for BNT162b2 after 45–59 days. |
Methods > Prospective observational study. > Patients with cancer and healthy controls (mostly HCW) > Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 μg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 μg dose with a planned follow-up boost at 12 weeks. > Blood samples taken before vaccination and at 3 and 5 weeks after the first vaccination. Where possible (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. Primary endpoints: seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine, effect of vaccine boosting after 21 days on seroconversion.
Findings: > 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls. > The proportion of positive anti-S IgG titres at 21 days after a single vaccine dose across the three cohorts were 32 (94%; 95% CI 81–98) of 34 healthy controls; 21 (38%; 26–51) of 56 patients with solid cancer, and 8 (18%; 10–32) of 44 patients with haematological cancer. > 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, 18 (95%; 95% CI 75–99) of 19 patients with solid cancer, 12 (100%; 76–100) of 12 healthy controls, and three (60%; 23–88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17–47) of 33, 18 (86%; 65–95) of 21, and four (11%; 4–25) of 36, respectively, who did not receive a boost. > The vaccine was well tolerated. No vaccine-related deaths reported.
Conclusion In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clin Infect Dis. 27APR2021</td>
<td>Vaccinated and convalescent donor-derived SARS-CoV-2-specific T cells as adoptive immunotherapy for high-risk COVID-19 patients</td>
<td>Papayanni P.G., et al. Greece gotpaper</td>
<td>Therapeutics</td>
<td>Aim: to provide the rationale towards the development of a SARS-CoV-2-specific T-cell (CoV-2-ST) bank from convalescent donors as T-cell immunotherapy against severe COVID-19.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods: SARS-CoV-2-specific T-cell immunity and expansion was tested in unexposed donors, COVID-19 infected individuals (convalescent), asymptomatic PCR-positive subjects, vaccinated individuals, non-ICU hospitalized patients and ICU patients who either recovered and were discharged (ICU recovered) or had a prolonged stay and/or died (ICU critical). CoV-2-STs were generated from all types of donors and underwent phenotypic and functional assessment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings: > A causal relationship between the expansion of endogenous CoV-2 STs and the disease outcome was shown; insufficient expansion of circulating CoV-2-STs identified hospitalized patients at high-risk for an adverse outcome. > CoV-2-STs with a similarly functional and non-alloreactive, albeit highly cytotoxic, profile against SARS-CoV-2 could be expanded from both convalescent and vaccinated donors generating clinical-scale, SARS-CoV-2-specific T-cell products with functional activity against both the unmutated virus and its B.1.1.7 variant. > Critical COVID-19 patient-originating CoV-2-STs failed to expand, recapitulating the in vivo failure of CoV-2-specific T-cell immunity to control the infection. > CoV-2-STs generated from asymptomatic PCR+ individuals presented weak responses whereas their counterparts originating from exposed to other seasonal coronaviruses subjects failed to kill the virus, thus disempowering the hypothesis of protective cross-immunity. The authors provide evidence on risk stratification of hospitalized COVID-19 patients and the feasibility of generating powerful CoV-2-ST products from both convalescent and vaccinated donors as an “off-the-shelf” T-cell immunotherapy for high-risk patients.</td>
</tr>
<tr>
<td>Clin Infect Dis. 27APR2021</td>
<td>Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination</td>
<td>Müller L., et al. Germany gotpaper</td>
<td>Vaccines</td>
<td>Cohort study with two age groups (young vaccinees <60 years old and elderly vaccinees >80, to compare antibody responses to the first and second dose of the BNT162b2 COVID-19 vaccination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> While the majority of participants in both groups produced specific IgG antibody titers against SARS-CoV-2 spike protein, titers were significantly lower in elderly participants. > The increment of antibody levels after the second immunization was higher in elderly participants, but the absolute mean titer of this group remained lower than the <60 group. > After the second vaccination, 31.3% of the elderly had no detectable neutralizing antibodies in contrast to the younger group, in which only 2.2% had no detectable neutralizing antibodies. These data show differences between the antibody responses raised after the first and second BNT162b2 vaccination, in particular lower frequencies of neutralizing antibodies in the elderly group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 1 331,993 people were vaccinated between Dec 8, 2020, and Feb 22, 2021 (mean age 65 years (SD 16.2)). > The first dose of the BNT162b2 mRNA vaccine was associated with a vaccine effect of 91% (95% CI 85–94) for reduced COVID-19 hospital admission at 28–34 days post-vaccination. > Vaccine effect at the same time interval for the ChAdOx1 vaccine was 88% (95% CI 75–94). > Results of combined vaccine effects against hospital admission due to COVID-19 were similar when restricting the analysis to those aged 80 years and older (83%, 95% CI 72–89 at 28–34 days post-vaccination). Mass roll-out of the first doses of the BNT162b2 mRNA and ChAdOx1 vaccines was associated with substantial reductions in the risk of hospital admission due to COVID-19 in Scotland.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
Methods:
> Prospective cohort of outpatients with suspected or confirmed COVID-19, registered in Covidom telesurveillance solution for home monitoring of patients with COVID-19 in the Greater Paris area, from March to August 2020.
Findings:
> Among 43,103 patients, mean age was 42.9 years (SD=14.3); 93.0% (n=40,081) of patients were < 65 years old and 61.9% (n=26,688) were women. Of these 43,103 patients, 67.5% (n=29,104) completed a medical questionnaire on comorbidities and symptoms.
> The main reported comorbidities were asthma (12.8%; n=3,685), hypertension (12.3%; n=3,546) and diabetes (4.8%; n=1,385).
> A small proportion of all eligible patients (4.1% [95% CI: 3.9–4.2]; 1,751/43,103) experienced clinical worsening. The rate of hospitalisation was 4.0% (95% CI: 3.8–4.2; n=1,728) and 0.1% (95% CI: 0.1–0.2; n=64) died.
> Probability of worsening was reduced with anosmia/ageusia.
Clinical worsening was rare among outpatients. Male sex, older age and comorbidities such as chronic renal disease, active cancers or obesity were independently associated with clinical worsening. However, our cohort may include patients younger and healthier than the general population. |
| **Lancet 23APR2021** | COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study | Hall V.J., et al. UK gotopaper | Vaccines | SIREN prospective cohort study among staff (aged ≥18 years) working in publicly-funded hospitals in the UK. Aim was to determine factors associated with vaccine coverage for BNT162b2 mRNA and ChAdOx1 nCOV-19 and document BNT162b2 effectiveness in a cohort of health-care workers undergoing regular asymptomatic testing.
Findings:
> 23 324 participants from 104 sites were enrolled. Median age: 46·1 years (IQR 36·0–54·1), 19 692 (84%) were female;
> 8203 (35%) assigned to the positive cohort, 15 121 (65%) assigned to the negative cohort.
> Total follow-up time was 2 months and 1 106 905 person-days (396 318 vaccinated and 710 587 unvaccinated).
> Vaccine coverage was 89% on Feb 5, 2021, 94% had BNT162b2.
> Significantly lower coverage was associated with previous infection, gender, age, ethnicity, job role, Index of Multiple Deprivation score.
> During follow-up, there were 977 new infections in the unvaccinated cohort, an incidence density of 14 infections per 10 000 person-days; the vaccinated cohort had 71 new infections 21 days or more after their first dose (incidence density four infections per 10 000 person-days) and nine infections 7 days after the second dose (incidence density four infections per 10 000 person-days).
> In the unvaccinated cohort, 543 (56%) participants had typical COVID-19 symptoms and 140 (14%) were asymptomatic on or 14 days before their PCR positive test date, compared with 29 (36%) with typical COVID-19 symptoms and 15 (19%) asymptomatic in the vaccinated cohort.
> A single dose of BNT162b2 vaccine showed vaccine effectiveness of 70% (95% CI 55–85) 21 days after first dose and 85% (74–96) 7 days after two doses in the study population.
Our findings show that the BNT162b2 vaccine can prevent both symptomatic and asymptomatic infection in working-age adults. This cohort was vaccinated when the dominant variant in circulation was B1.1.7 and shows effectiveness against this variant. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA Netw Open 23APR2021</td>
<td>Association of Maternal Perinatal SARS-CoV-2 Infection With Neonatal Outcomes During the COVID-19 Pandemic in Massachusetts</td>
<td>Angelidou A., et al. USA gotopaper</td>
<td>Public health / Epidemiology</td>
<td>Ascertain the percentage of neonates who were born to mothers with positive SARS-CoV-2 test results during birth hospitalization, clinical and sociodemographic factors associated with neonatal test positivity, and clinical and virological outcomes for newborns during hospitalization and 30 days after discharge. Methods: > Multicenter cohort study. Neonates were born to mothers with positive SARS-CoV-2 test results within 14 days before to 72h after delivery, and were followed up for 30 days after hospital discharge. Primary outcomes for neonates: (1) positive SARS-CoV-2 test results, (2) indicators of adverse health, and (3) clinical signs and viral testing. Findings: > Of the 255 neonates who were born to mothers with SARS-CoV-2 infection, 225 (88.2%) were tested for SARS-CoV-2 and 5 (2.2%) had positive results during the birth hospitalization. > High maternal social vulnerability was associated with higher likelihood of neonatal test result positivity (adjusted odds ratio, 4.95; 95% CI, 1.53-16.01; P = .008), adjusted for maternal COVID-19 symptoms, delivery mode, and rooming-in practice. > Adverse outcomes during hospitalization were associated with preterm delivery indicated by worsening maternal COVID-19 symptoms. > Of the 151 newborns with follow-up data, 28 had nonroutine clinical visits, 7 underwent SARS-CoV-2 testing, and 1 had a positive result. Conclusion: Newborns exposed to SARS-CoV-2 were at risk for both direct and indirect adverse health outcomes.</td>
</tr>
<tr>
<td>Science 23APR2021</td>
<td>Resurgence of SARS-CoV-2: detection by community viral surveillance</td>
<td>Riley S., et al. UK gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Aims: To estimate prevalence of COVID-19 in England through a community-wide national representative surveillance program in England (REACT-1 study); to detect resurgence from low prevalence. Methods: > Repeated random population-based sampling: 2.4 Million people were invited to join the study over 4 rounds from May 2020 to beginning of September 2020; 596,000 tested swabs were obtained (overall response rate of 25%) > Estimation of prevalence in this random sample (correcting for variation in response rate), over time, fitting a model of constant exponential growth and decay, and a model with a flexible p-spline. > Geographical variation in prevalence investigated by fitting a spatio-temporal logistic model Findings: > More reliable estimates of prevalence than from routine surveillance, is affected by test availability and test-seeking behaviour > Detection of epidemic resurgence in the summer 2020 (between end of July and mid-August), that led to the announcement of the “rule of six” social distancing measure by the UK government > Substantial variations in age patterns over time; the second wave started in young adults; > Case data (routine surveillance) consistently underestimates infections at 5-14yo compared to random population based sampling > Higher prevalence (x2) in participants of Asian ethnicity, also higher in Black people – higher rates of hospitalization and mortality from COVID-19 for minority ethnic groups in England may therefore reflect their higher rates of infection rather than a poorer prognosis once infected. > Spatial heterogeneity in prevalence detected at sub-regional level Conclusions: > Demonstration of the capability of a large national community surveillance program to detect a resurgence of SARS-CoV-2 infection at low prevalence. > The prevalence in the 5-14 age group is higher in this random testing study compared to case data.</td>
</tr>
</tbody>
</table>
Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection

Title: Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection

Authors: Villar J., et al.

Field of expertise: Public Health / Epidemiology

Key facts

Evaluation of the risks associated with COVID-19 in pregnancy on maternal and neonatal outcomes compared with not-infected, concomitant pregnant individuals.

Methods:

Cohort study involving 43 institutions in 18 countries, 2 unmatched, consecutive, not-infected women concomitantly enrolled immediately after each infected woman was identified, at any stage of pregnancy or delivery. Women and neonates were followed up until hospital discharge.

Main Outcomes: indices of (maternal and severe neonatal/perinatal) morbidity and mortality (adjusted for country, month entering study, maternal age, and history of morbidity)

Findings

- A total of 706 pregnant women with COVID-19 diagnosis and 1424 pregnant women without COVID-19 diagnosis enrolled
- Broadly similar demographic characteristics (mean [SD] age, 30.2 [6.1] years).
- Overweight early in pregnancy occurred in 323 women (48.6%) with COVID-19 diagnosis and 554 women (40.2%) without.
- Women with COVID-19 diagnosis were at higher risk for preeclampsia/eclampsia (relative risk [RR], 1.76; 95% CI, 1.27-2.43), severe infections (RR, 3.38; 95% CI, 1.63-7.01), intensive care unit admission (RR, 5.04; 95% CI, 3.13-8.10), maternal mortality (RR, 22.3; 95% CI, 2.88-172), preterm birth (RR, 1.59; 95% CI, 1.30-1.94), medically indicated preterm birth (RR, 1.97; 95% CI, 1.56-2.51), severe neonatal morbidity index (RR, 2.66; 95% CI, 1.69-4.18), and severe perinatal morbidity and mortality index (RR, 2.14; 95% CI, 1.66-2.75).
- Fever and shortness of breath for any duration was associated with increased risk of severe maternal complications (RR, 2.56; 95% CI, 1.92-3.40) and neonatal complications (RR, 4.97; 95% CI, 2.11-11.69).
- Asymptomatic women with COVID-19 diagnosis remained at higher risk only for maternal morbidity (RR, 1.24; 95% CI, 1.00-1.54) and preeclampsia (RR, 1.63; 95% CI, 1.01-2.63).
- Among women who tested positive (98.1% by real-time polymerase chain reaction), 54 (13%) of their neonates tested positive.
- Cesarean delivery (RR, 2.15; 95% CI, 1.18-3.91) but not breastfeeding (RR, 1.10; 95% CI, 0.66-1.85) was associated with increased risk for neonatal test positivity.

Conclusions

COVID-19 in pregnancy was associated with consistent and substantial increases in severe maternal morbidity and mortality and neonatal complications, compared to healthy pregnant women.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> COVID-19 patient sera activates the complement system and kills infected cells by Antibody-Dependent Cellular Cytotoxicity (ADCC).
> Sera from asymptomatic individuals harbor polyfunctional antibodies. They neutralize the virus, activate ADCC and trigger complement deposition.
> Antibody levels and functions are lower in asymptomatic individuals than in symptomatic cases. Antibody functions are correlated, regardless of disease severity.
> Longitudinal samplings show that antibody functions follow similar kinetics of induction and contraction.
Overall, asymptomatic SARS-CoV-2 infection elicits polyfunctional antibodies neutralizing the virus and targeting infected cells. |
| PNAS 21APR2021 | Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers | Buckner J.H., et al. USA | Public Health / Epidemiology | **Aims:**
To evaluate the optimal allocation of a limited vaccine supply in the United States across groups defined by age and essential worker status, which constrains opportunities for social distancing.
Methods:
> Compartmental model of transmission dynamics capturing key sources of group heterogeneity. The model contains 9 epidemiological status per group, 6 age classes, 2 groups depending on the essential worker status for age classes 20-39 and 40-59 and 4 possible locations (home, work, school, other).
> Three alternative policy objectives are considered: minimizing infections, years of life lost, or deaths.
> Assuming vaccines are available for 60% of the population for the first 6 months, the optimal vaccine allocation strategy, that evolves with the epidemiological state of the population, is computed.
Findings:
> The model predicts that older essential workers should be targeted first whatever the objective.
> With the objective of minimizing infection, younger essential workers must be prioritized next.
> With the objective of reducing mortality, older age classes must be prioritized next.
> The dynamic optimal policy outperforms an untargeted approach from 17% to 44%, depending on the objective, the vaccine effectiveness and non-pharmaceutical interventions.
> There are trade-offs in what can be achieved between the objectives. For example, policies that minimize infections result in substantially more deaths than a policy that minimizes deaths.
> The optimal prioritization is sensitive to several factors, most notably vaccine effectiveness and supply, rate of transmission and the magnitude of initial infections.
Conclusions:
> Temporal flexibility of the allocation strategy is important to optimize public health goals.
> Distinguishing between essential and non-essential workers is important for vaccine allocation. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Primary end points: vaccine efficacy against moderate to severe–critical Covid-19 with an onset at least 14 days and at least 28 days

Findings: > 19,630 SARS-CoV-2–negative participants who received Ad26.COV2.S and 19,691 who received placebo. > Ad26.COV2.S protected against moderate to severe–critical Covid-19 with onset at least 14 days after administration (116 cases in the vaccine group vs. 348 in the placebo group; efficacy, 66.9%; adjusted 95% confidence interval [CI], 59.0 to 73.4) and at least 28 days after administration (66 vs. 193 cases; efficacy, 66.1%; adjusted 95% CI, 55.0 to 74.8). > Vaccine efficacy was higher against severe–critical Covid-19 (76.7% [adjusted 95% CI, 54.6 to 89.1]) for onset at ≥14 days and 85.4% [adjusted 95% CI, 54.2 to 96.9] for onset at ≥28 days. > Despite 86 of 91 cases (94.5%) in South Africa with sequenced virus having the 20H/501Y.V2 variant, vaccine efficacy was 52.0% and 64.0% against moderate to severe–critical Covid-19 with onset at least 14 days and at least 28 days after administration, respectively, and efficacy against severe–critical Covid-19 was 73.1% and 81.7%, respectively. > Reactogenicity was higher with Ad26.COV2.S than with placebo but was generally mild to moderate and transient. > The incidence of serious adverse events was balanced between the two groups. Three deaths occurred in the vaccine group (none were Covid-19–related), and 16 in the placebo group (5 were Covid-19–related).

Conclusion: A single dose of Ad26.COV2.S protected against symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection and was effective against severe–critical disease, including hospitalization and death. Safety appeared to be similar to that in other phase 3 trials of Covid-19 vaccines. |
Findings: > 35,691 v-safe participants 16 to 54 years of age identified as pregnant. > Injection-site pain was reported more frequently among pregnant persons than among nonpregnant women, whereas headache, myalgia, chills, and fever were reported less frequently. > Among 3958 participants enrolled in the v-safe pregnancy registry, 827 had a completed pregnancy, of which 115 (13.9%) resulted in a pregnancy loss and 712 (86.1%) resulted in a live birth (mostly among participants with vaccination in the third trimester). > Adverse neonatal outcomes included preterm birth (in 9.4%) and small size for gestational age (in 3.2%); no neonatal deaths were reported. > Although not directly comparable, calculated proportions of adverse pregnancy and neonatal outcomes in persons vaccinated against Covid-19 who had a completed pregnancy were similar to incidences reported in studies involving pregnant women that were conducted before the Covid-19 pandemic. > Among 221 pregnancy-related adverse events reported to the VAERS, the most frequently reported event was spontaneous abortion (46 cases).

Conclusions: Preliminary findings did not show obvious safety signals among pregnant persons who received mRNA Covid-19 vaccines. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methods:</td>
<td></td>
<td></td>
<td>Room to please</td>
</tr>
<tr>
<td></td>
<td>> Retrospective analysis of data from the Israeli Ministry of Health (28 August 2020–24 February 2021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Temporal dynamics of the number of new COVID-19 cases and hospitalizations after the vaccination campaign, initiated on 20 December 2020.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To distinguish the possible effects of the vaccination on cases and hospitalizations from other factors, including a third lockdown (8 January 2021) 3 comparison were performed:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) individuals aged 60 years and older prioritized to receive the vaccine first versus younger age groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) the January lockdown versus the September lockdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) early-vaccinated versus late-vaccinated cities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Findings:</td>
<td></td>
<td></td>
<td>Room to please</td>
</tr>
<tr>
<td></td>
<td>> 2 months after the initiation of the vaccination campaign, with 85% of individuals older than 60 years already vaccinated with two doses (24 February 2021), there was an approximately 77% drop in cases, a 45% drop in positive test percentage, a 68% drop in hospitalizations and a 67% drop in severe hospitalizations compared to peak values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> consecutive drops in younger age groups later, according to the order of vaccine prioritization, including earlier drops in some young age groups (16–21 years) prioritized over older age groups (21–35 years).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Similar pattern of a larger and faster decline of cases and hospitalizations in older individuals during the previous lockdown implemented in Israel (between 18 September 2020 and 18October 2020) were not observed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusion:</td>
<td></td>
<td></td>
<td>Room to please</td>
</tr>
<tr>
<td></td>
<td>Analysis of large-scale, real-world data from Israel demonstrating real-life effectiveness of a national vaccination campaign</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell 20APR2021</td>
<td>Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant</td>
<td>Deng X., et al. USA gotopaper</td>
<td>Public Health / Epidemiology - Variants</td>
<td>The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation</td>
</tr>
<tr>
<td></td>
<td>Findings:</td>
<td></td>
<td></td>
<td>Room to please</td>
</tr>
<tr>
<td></td>
<td>> We identified an emerging SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the Western United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged in May 2020 and increased from 0% to >50% of 42 sequenced cases from September 2020 to January 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Showing 18.6-24% increased transmissibility relative to wild-type circulating strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> The variant carries 3 mutations in the spike protein, including an L452R substitution.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Findings:</td>
<td></td>
<td></td>
<td>Room to please</td>
</tr>
<tr>
<td></td>
<td>> 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Antibody neutralization assays revealed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Cell 20APR2021</td>
<td>Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant</td>
<td>Deng X., et al. USA gotopaper</td>
<td>Public Health / Epidemiology Variants</td>
<td>> We identified an emerging SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the Western United States. > Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged in May 2020 and increased from 0% to >50% of 42 sequenced cases from September 2020 to January 2021. > Showing 18.6-24% increased transmissibility relative to wild-type circulating strains. > The variant carries 3 mutations in the spike protein, including an L452R substitution. Findings > 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. > Antibody neutralization assays revealed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.</td>
</tr>
<tr>
<td>Lancet Infect Dis. 19APR2021</td>
<td>Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1-2, dose-ranging study</td>
<td>Goepfert P.A., et al. International gotopaper</td>
<td>Vaccines</td>
<td>Interim safety and immunogenicity results of the first-in-human study of the CoV2 preDTM vaccine with two different adjuvant formulations. > Phase 1-2, randomised, double-blind study in healthy, SARS-CoV-2-seronegative adults in ten clinical research centres in the USA. > Stratified by age (18–49 years and ≥50 years). > One dose (on day 1) or two doses (on days 1 and 22) of placebo or candidate vaccine, containing low-dose (effective dose 1.3 μg) or high-dose (2.6 μg) antigen with adjuvant AF03 (Sanofi Pasteur) or AS03 (GlaxoSmithKline) or unadjuvanted high-dose antigen (18–49 yrs only). Primary endpoints: safety (up to day 43), and immunogenicity (SARS-CoV-2 neutralising antibodies on 1, 22, and 36. Findings > Interim safety analyses included 439 (>99%) of 441 randomly assigned participants (299 aged 18–49 years and 140 aged ≥50 years). > Nab titres analysed in 326 (74%) of 441 participants (235 [79%] of 299 aged 18–49 years and 91 [64%] of 142 aged ≥50 years). > No vaccine-related unsolicited immediate adverse events, serious adverse events, medically attended adverse events classified as severe, or adverse events of special interest. > Solicited local and systemic reactions of any grade after two vaccine doses were reported in 81% (95% CI 61–93; 21 of 26) of participants in the low-dose plus AF03 group, 93% (84–97; 74 of 80) in the low-dose plus AS03 group, 89% (70–98; 23 of 26) in the high-dose plus AF03 group, 95% (88–99; 81 of 85) in the high-dose plus AS03 group, 29% (10–56; five of 17) in the unadjuvanted high-dose group, and 21% (8–40; six of 29) in the placebo group. > A single vaccine dose did not generate neutralising antibody titres above placebo levels in any group at days 22 or 36. > Among participants aged 18–49 years, neutralising antibody titres after two vaccine doses were 13·1 (95% CI 6·4–26·9) in the low-dose plus AF03 group, 20·5 (9·3–41·2) in the low-dose plus AS03 group, 43·2 (20·6–90·4) in the high-dose plus AF03 group, 75·1 (50·5–112·0) in the high-dose plus AS03 group, 5·00 (not calculated, NT) in the unadjuvanted high-dose group, and 5·00 (NT) in the placebo group. > Among participants aged 50 or older, neutralising antibody titres after two vaccine doses were 8·62 (1·90–39·0) in the low-dose plus AF03 group, 12·9 (7·09–23·4) in the low-dose plus AS03 group, 12·3 (4·35–35·0) in the high-dose plus AF03 group, 52·3 (25·3–108·0) in the high-dose plus AS03 group, and 5·00 (NT) in the placebo group. Conclusions: Lower than expected immune responses, especially in the older age groups, and high reactogenicity after dose two probably due to higher than anticipated host-cell protein content and lower than planned antigen doses in the formulations tested, which was discovered during characterisation studies on the final bulk drug substance. Further studies will focus on optimal antigen formulation and dose.</td>
</tr>
</tbody>
</table>
Safety and Immunogenicity of an MF59-Adjuvanted Subunit Vaccine for SARS-CoV-2: A Randomised, Double-Blind, Placebo-Controlled, Phase 1 Trial

Authors: Chappel K.J., et al.
Place: Australia
Journal: Lancet Infect Dis.
Date: 19 Apr 2021

Title: Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial

Field of expertise: Vaccines

Key facts:
- Safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp

Methods:
- Phase 1, double-blind, placebo-controlled, block-randomised trial in a single clinical trial site in Brisbane, QLD, Australia. NCT04495933.
- Healthy adults (aged ≥18 to ≤55 years). No history of SARS-CoV-2 infection; randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, clamp vaccine at 5 μg, 15 μg, or 45 μg, or one dose of clamp vaccine at 45 μg followed by placebo.
- **Primary safety endpoints:** solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing.
- **Primary immunogenicity endpoints:** were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose.

Findings:
- 120 volunteers randomly assigned to groups (n=24 per group).
- 114 (95%) completed the study up to day 57 (mean age 32.5 years [SD 10.4], 65 [54%] male, 55 [46%] female).
- Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 clamp vaccine.
- Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 clamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 clamp vaccine at any dose.
- Vaccination with SARS-CoV-2 clamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 μg dose (GMT 6400, 95% CI 3683–11 122), with 15 μg dose (7492, 4959–11 319), and the two 45 μg dose cohorts (8770, 5526–13 920 in the two-dose 45 μg cohort; 8793, 5570–13 881 in the single-dose 45 μg cohort); 4 weeks after the second dose (day 57) with two 5 μg doses (102 400, 64 857–161 676), with two 15 μg doses (74 725, 51 300–108 847), with two 45 μg doses (79 586, 55 430–114 268), only a single 45 μg dose (4795, 2858–8043). At day 57, 67 (99%) of 68 participants who received two doses of clamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 μg dose and none of 22 who received placebo. Participants receiving two doses of clamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 μg doses (GMT 228, 95% CI 146–356), two 15 μg doses (230, 170–312), and two 45 μg doses (239, 187–307).

Conclusions:
- Subunit vaccine MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile.
- However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development.
- Studies are ongoing with alternative molecular clamp trimersisation domains to ameliorate this response.

BNT162b2 Vaccination Effectively Prevents the Rapid Rise of SARS-CoV-2 Variant B.1.1.7 in High Risk Populations in Israel

Authors: Munitz A., et al.
Place: Israel
Date: 18 Apr 2021

Title: BNT162b2 Vaccination Effectively Prevents the Rapid Rise of SARS-CoV-2 Variant B.1.1.7 in High Risk Populations in Israel

Field of expertise: Vaccines - Variants

Key facts:
- Aim: evaluating the impact on B.1.1.7 variant spreading of three Israeli national programs: massive RT-PCR testing, focused surveillance in nursing homes and robust prioritized vaccination with BNT162b2. Analysis of ~300,000 RT-PCR samples (Dec 6th 2020 – Feb 10th 2021).
- **B.1.1.7 variant is 45% (95% CI:20-60%) more transmissible** than the wild-type strain, and became the dominant in Israel within 3.5 weeks.
- **Active surveillance** through focused RT-PCR testing markedly reduces the transmission of B.1.1.7 in nursing homes.
- **Prioritized vaccination** programs seem capable of preventing the spread of the B.1.1.7 variant in the elderly.
- Proactive surveillance combined with prioritized vaccination are achievable, and reduce severe illness and subsequent death.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Blood 16APR2021 | Efficacy of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Chronic Lymphocytic Leukemia | Herishanu Y., et al. Israel gotopaper | Vaccines | The goal of this study was to determine the efficacy of COVID-19 vaccine (BNT162b2 mRNA) in patients with CLL.

Methods

> We evaluated humoral immune responses to BNT162b2 mRNA COVID-19 vaccine in patients with CLL and compared responses with those obtained in age-matched healthy controls.
> Patients received two vaccine doses, 21 days apart, and antibody titers were measured using Elecsys® Anti-SARS-CoV-2S assay after administration of the second dose.

Findings

> In 167 total patients with CLL the antibody response rate was 39.5%.
> A comparison between 52 patients with CLL and 52 sex- and aged-matched healthy controls, revealed a significantly reduced response rate among patients (52% vs 100%, respectively; adjusted odds ratio=0.010, 95% CI 0.001-0.162; p<0.001).
> Response rate was highest in patients who obtained clinical remission after treatment (79.2%), followed by 55.2% in treatment-naive and 16% in patients under treatment at the time of vaccination.
> None of the patients exposed to anti-CD20 antibodies <12 months prior to vaccination responded.
> In a multivariate analysis, the independent predictors of response were younger age, females, lack of currently active treatment, IgG levels ≥550 mg/dL and IgM levels ≥40mg/dL.

Antibody response to BNT162b2 mRNA COVID19 vaccine in CLL patients with is markedly impaired and affected by disease activity and treatment.

> In patients treated with either Bruton’s tyrosine kinase inhibitors or venetoclax ± anti-CD20 antibody, responses are relatively low (16.0% and 13.6%, respectively).

In conclusion, antibody-mediated response to BNT162b2 mRNA COVID-19 vaccine in patients with CLL is markedly impaired and affected by disease activity and treatment.

| Blood 16APR2021 | Low Neutralizing Antibody Responses Against SARS-CoV-2 in Elderly Myeloma Patients After the First BNT162b2 Vaccine Dose | Terpos E., et al. Greece gotopaper | Vaccines | We report the development of neutralizing antibodies (NAbs) against SARS-CoV-2 in MM patients (above 18 years) after the first dose of the BNT162b2 vaccine.

Methods

> Included 48 MM patients (29males/19females; median age: 83years, range: 59-92years) and 104controls (57males/47females; median age: 83 years, range: 65-95 years), who were vaccinated during the same period, at the same vaccination center (Greece).

Findings

> After the first dose of the vaccine, on D22, MM patients had lower NAb titers compared to controls:median NAb inhibition titer and range was 20.6% (0-96.7%) for MM patients versus 32.5% (5.2-97.3%) for controls; P<0.01. More, specifically, only 12 (25.0%) MM patients versus 57 (54.8%) controls developed NAb titers ≥30% on D22.

> The respective number of MM patients and controls who developed NAb titers ≥50% (which corresponds to clinically relevant viral inhibition11) was 4 (8.3%) and 21 (20.2%), respectively.

> Interestingly, only one (11.1%) out of nine patients with smoldering myeloma had NAb titers of equal or more than 30% (positivity cut-off) versus 11/39 (28.2%) patients with active MM.

> This observation is of great interest as hypoglobulinemia has been associated with inferior antibody response among patients with chronic lymphocytic leukemia and COVID-19.

> Our data indicate that the first dose of BNT162b2 leads to production of lower levels of NAbs against SARS-CoV-2 compared to non-MM controls of similar age and gender and without malignant disease.

> This low antibody response of elderly myeloma patients after the first BNT162b2 dose may not be seen in younger patients.

> Some anti-myeloma therapies have a B-cell depleting activity which in turn may impair immune response to vaccines, whereas both myeloma microenvironment and anti-myeloma treatments may impair T-cell function.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science 16APR2021 | SARS-CoV-2 within-host diversity and transmission | Lythgoe K.A., et al. UK [gotopaper](#) | Genomics / Phylogenomics | **Aim:** Characterize SARS-CoV-2 within-host diversity and transmission
Methods: Deep-sequencing of 1313 clinical samples from the UK (including 16 assumed transmission pairs), transmission bottleneck inference with exact beta-binomial sampling method, phylogenetics
Key facts:
> Within-host viral diversity is relatively low during acute infection; selection seems to be mostly negative (removal of deleterious mutations)
> Estimation of the bottleneck size for transmission: of 1 to 8 viruses
> Narrow transmission bottleneck, so most often transmission of the majority within-host variant; but sometimes transmission of minority variant (leading to change in consensus sequence, i.e. variation at the host level), and possible transmission of mixed infection.
> Identification of spike mutations present in multiple samples with known phenotypic effect (e.g. L5F, G446V, A879V)
Conclusion: Emergence of vaccine and therapeutic escape mutations likely to be rare during early infection, but observation of immune-escape variants underlines the need for continued vigilance. Key role of open, large and rigorously controlled datasets, integrating genomic, clinical and epidemiological information. |
| NEJM 16APR21 | Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination | Scully M., et al. UK [gotopaper](#) | Vaccination | **Methods:**
> 23 patients presenting thrombosis and thrombocytopenia 6 to 24 days after receiving the first dose of the ChAdOx1 nCoV-19 vaccine (AstraZeneca).
Findings:
> Median age was 46 years (range, 21 to 77). 16 patients (70%) younger than 50 years. 14 patients (61%) female
> 22 patients presented with acute thrombocytopenia and thrombosis, primarily cerebral venous thrombosis, and 1 patient presented with isolated thrombocytopenia and a hemorrhagic phenotype.
> All the patients had low or normal fibrinogen levels and elevated d-dimer levels at presentation. No evidence of thrombophilia or causative precipitants was identified.
> Testing for antibodies to platelet factor 4 (PF4) was positive in 22 patients (with 1 equivocal result) and negative in 1 patient.
Conclusions:
A pathogenic PF4-dependent syndrome, unrelated to the use of heparin therapy, can occur after the administration of the ChAdOx1 nCoV-19 vaccine. |
| Clin Infect Dis. 16APR2021 | Impact of convalescent plasma therapy on SARS CoV-2 antibody profile in COVID-19 patients | Tang J., et al. USA [gotopaper](#) | Therapeutics | **Aim:** to better understand the impact of convalescent plasma (CP) on antibody response in COVID-19 patients
Methods: Longitudinal analysis of antibody profile on 115 sequential plasma samples from 16 hospitalized COVID-19 patients treated with either CP or standard of care
Findings:
> Differential antibody kinetics was observed for antibody binding, IgM/IgG/IgA distribution, and affinity maturation in ‘survived’ vs. ‘fatal’ COVID-19 patients.
> Surprisingly, CP treatment did not predict survival. Strikingly, marked decline in neutralization titers was observed in the fatal patients prior to death, and convalescent plasma treatment did not reverse this trend.
> Irrespective of CP treatment, higher antibody affinity to the SARS-CoV-2 prefusion spike was associated with survival outcome, while sustained elevated IgA response was associated with fatal outcome in COVID-19 patients.
> Treatment of COVID-19 patients with CPs should be carefully targeted, and effectiveness of treatment may depend on the clinical and immunological status of COVID-19 patients as well as the quality of the antibodies in the CP. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| PNAS 16APR2021 | A high-throughput microfluidic nanoimmunoassay for detecting anti–SARS-CoV-2 antibodies in serum or ultralow-volume blood samples | Swank Z., et al. Switzerland gotopaper | Diagnostics | **Aim:** development of a sensitive and specific microfluidic nanoimmunooassay (NIA) for the detection of anti–SARS-CoV-2 IgG antibodies in 1,024 samples in parallel.
Methods: To eliminate the need for venipuncture, they developed a low-cost, ultralow-volume whole blood sampling methods based on two commercial devices and repurposed a blood glucose test strip. The glucose test strip permits the collection, shipment, and analysis of 0.6 μL of whole blood easily obtainable from a simple finger prick. High-throughput NIA was conducted using a PDMS microfluidic device.
Findings:
> The method achieved a specificity of 100% and a sensitivity of 98% based on the analysis of 289 human serum samples (155 positive SARS-CoV-2–infected and 134 negative individuals)
> A single researcher can achieve a throughput of one or two devices, or 512 to 1,024 samples per day (analyzed in duplicate) in a small research laboratory not dedicated or equipped for high-throughput molecular diagnostics.
> The combination of a high-throughput, highly specific and sensitive NIA and the ability to analyze minute volumes of dried blood samples have enormous potential for SARS-CoV-2 serology, epidemiological studies, vaccine trial, and therapeutic development support. |
| Lancet Respir Med. 15APR2021 | SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study | Letizia A.G., et al. USA gotopaper | Public Health / Epidemiology | **Aim:** To investigate the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection
Methods: 3249 participants (US Marine recruits, aged 18–20 years, following a 2-week unsupervised quarantine at home) were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA.
Findings:
> Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year).
> In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year) IR 0.18.
> Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0.45).
> Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants.
> Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation.
Seropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Brain 15APR2021 | COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital | Thakur K.T., et al. USA | Clinics | **Aim:** to present the clinical, neuropathological, and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in a medical center.
Findings:
> Hospital-associated complications were common, including 8 (20%) with deep vein thrombosis/pulmonary embolism (DVT/PE), 7 (17%) patients with acute kidney injury requiring dialysis, and 10 (24%) with positive blood cultures during admission.
> Neuropathological examination of 20–30 areas from each brain revealed hypoxic/ischemic changes in all brains, both global and focal; large and small infarcts, many of which appeared hemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem.
> Sparse T lymphocyte accumulation was observed in either perivascular regions or in the brain parenchyma.
> qRT-PCR revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in nasal epithelia.
> RNAscope and immunocytochemistry failed to detect viral RNA or protein in brains.

Microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but rather likely from systemic inflammation. |
| JAMA 15APR2021 | Spike Antibody Levels of Nursing Home Residents With or Without Prior COVID-19 3 Weeks After a Single BNT162b2 Vaccine Dose | Blain, H., et al. France | Vaccines | Older adults living in nursing homes are at higher risk for severe COVID-19, and the immune response to the vaccine may differ from that of younger, healthier adults.
Findings:
> 102 residents: 60 had no prior SARS-CoV-2 infection (COVID-19), 36 had a positive RT-PCR result and were seropositive for SARS-CoV-2 N-protein IgG in June 2020, and 6 had a positive RT-PCR result or were seropositive for SARS-CoV-2 N-protein IgG.
> All 36 residents with prior COVID-19 were seropositive for S-protein IgG after 1 vaccine dose vs 29 of 60 residents (49.2%) without prior COVID-19.
> Among residents with prior COVID-19, the median level of S-protein IgG was 40 000 AU/mL or greater vs 48.0 AU/mL in those without prior COVID-19.
> One resident with a positive RT-PCR result in April 2020 tested seronegative for N-protein IgG in June 2020 and January 2021; the resident had a robust S-protein IgG level (≥40 000 AU/mL)
> Five residents were found to be seropositive for N-protein IgG in June 2020 while having repeated negative RT-PCR results in April 2020. All 5 of these residents had high levels of S-protein IgG antibody
> Among the 6 residents with a positive RT-PCR result or who were seropositive for N-protein IgG, the levels of S-protein IgG antibody were significantly higher than among the 60 without prior COVID-19 and were not statistically significantly different from the 36 who had a positive RT-PCR result and were seropositive for N-protein IgG
Conclusions:
This preliminary study suggests that a single dose of BNT162b2 vaccine may be sufficient to obtain a high level of S-protein IgG antibody in nursing home residents previously diagnosed with COVID-19 based on RT-PCR results. |
Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination

Authors and SARS-CoV-2 for

Goel R.R., et al.
USA
gotopaper

Field of expertise
Immunology

Key facts

Study of **antibody and antigen-specific memory B cells** over time after mRNA vaccination in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects.

- SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant.
- **Memory B cells** specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naïve subjects after the second vaccine dose, though the memory B cell response declined slightly with age.
- In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose.
- The robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens.

Robust serological and cellular priming by mRNA vaccines were demonstrated. COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses.

SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation in COVID-19 patients

Authors and SARS-CoV-2 for

Saini S.K., et al.
Denmark
gotopaper

Field of expertise
Immunology

Aim: to examine the full-spectrum of CD8+ T cell immunity in COVID-19, by experimentally evaluating 3141 major histocompatibility (MHC) class I binding peptides covering the complete SARS-CoV-2 genome.

Results

- A comprehensive list of 122 immunogenic and a subset of immunodominant SARS-CoV-2 T cell epitopes was reported.
- Substantial CD8+ T cell recognition was observed in COVID-19 patients, with up to 27% of all CD8+ lymphocytes interacting with SARS-CoV-2-derived epitopes.
- Most immunogenic regions were derived from ORF1 and ORF3, with ORF1 containing most of the immunodominant epitopes.
- CD8+ T cell recognition of lower affinity was also observed in healthy donors toward SARS-CoV-2-derived epitopes. This pre-existing T cell recognition signature was partially overlapping with the epitope landscape observed in COVID-19 patients and may drive the further expansion of T cell responses to SARS-CoV-2 infection.
- The phenotype of the SARS-CoV-2-specific CD8+ T cells revealed a strong T cell activation in COVID-19 patients, while minimal T cell activation was seen in healthy individuals.
- Patients with severe disease displayed significantly larger SARS-CoV-2-specific T cell populations compared to patients with mild diseases and these T cells displayed a robust activation profile.

These results further the understanding of T cell immunity to SARS-CoV-2 infection and hypothesize that strong antigen-specific T cell responses are associated with different disease outcomes.

Viral sequencing reveals US healthcare personnel rarely become infected with SARS-CoV-2 through patient contact

Authors and SARS-CoV-2 for

USA
gotopaper

Field of expertise
Public Health / Epidemiology

Aim: to infer the most likely source of infection in health personnel (HCP) by combining epidemiological data and viral sequences from healthcare and the general community.

- SARS-CoV-2 infection clusters involving 95 HCP and 137 possible patient contact sequences.
- The majority of HCP infections could not be linked to a patient or co-worker (55/95; 57.9%) and were genetically similar to viruses circulating concurrently in the community.
- 10.5% of infections could be traced to a co-worker (10/95). Strikingly, only 4.2% of HCP infections could be traced to a patient source (4/95).

This study found no evidence for healthcare-associated transmission in the majority of HCP infections evaluated. It appears that HCP most commonly becomes infected with SARS-CoV-2 via community exposure.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>14APR2021</td>
<td></td>
<td></td>
<td></td>
<td>> Levels of sero-neutralization and IgG rates against the ancestral strain decreased significantly over time. After 6 months, 2.8% of the patients had a negative serological status for both anti-S (spike) and anti-NP (Nucleocapsid) IgG.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> All sera had a persistent and effective neutralizing effect against SARS-CoV-2. IgG levels correlated with sero-neutralization and this correlation was stronger for anti-S than for anti-NP antibodies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> The level of sero-neutralization quantified at 6 months correlated with markers of initial severity, notably ICU admission and the need for mechanical invasive ventilation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Sera collected at 6 months showed efficient neutralizing effects against D614G, B.1.1.7 and P.1 variants but a significantly weaker activity against B.1.351 variant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>These results indicate a sustained humoral response against the ancestral strain and the D614G, B.1.1.7 and P.1 variants for at least 6 months in patients previously hospitalized for COVID-19.</td>
</tr>
<tr>
<td>Science</td>
<td>Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil</td>
<td>Faria N.R., et al. UK gotopaper</td>
<td>Public Health / Epidemiology - Variants</td>
<td>Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern: Investigate the emergence of the P.1 lineage and explore epidemiological explanations for the resurgence of COVID-19 in Manaus.</td>
</tr>
<tr>
<td>14APR2021</td>
<td></td>
<td></td>
<td></td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Using genomic data, structure-based mapping of mutations of interest onto the spike protein, and dynamical epidemiology modelling of genomic and mortality data (two-category dynamical model that integrates genomic and mortality data)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> We sequenced SARS-CoV-2 genomes from 184 samples from patients seeking COVID-19 testing in two diagnostic laboratories in Manaus between November and December 2020, using the ARTIC V3 multiplexed amplicon scheme (24) and the MinION sequencing platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Lineage P.1, acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> We estimate that P.1 may be 1.7–2.4-fold more transmissible, and that previous (non-P.1) infection provides 54–79% of the protection against infection with P.1 that it provides against non-P.1 lineages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> The B.1.1.7 lineage exhibits similar evolutionary characteristics, which was hypothesized to have occurred in a chronically infected or immunocompromised patient</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Our results further show that natural immunity waning alone is unlikely to explain the observed dynamics in Manaus, with support for P.1 possessing altered epidemiological characteristics robust to a range of values assumed for the date of the lineage’s emergence and the rate of natural immunity waning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. Studies to evaluate real-world vaccine efficacy in response to P.1 are urgently needed.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>

Case report:
- 48-year-old woman, PCR - for SARS CoV 2. Receiving the Ad26.COV2.S vaccine 14 days before symptom onset.
- Mild anemia and severe thrombocytopenia. Marked reduction in the platelet count with occasional schistocytes, prolonged activated partial thromboplastin time, and a marked elevation in the d-dimer level, indicating a disseminated intravascular coagulation–like state.
- Screening test for antibodies against platelet factor 4 (PF4)–heparin by latex-enhanced immunoassay negative. However, the result of enzyme-linked immunosorbent assay for antibodies against PF4–polyanion was strongly positive.

Conclusions:
Rare occurrence of vaccine-induced immune thrombotic thrombocytopenia could be related to adenoviral vector vaccines.

Methods:
Epidemiological analysis, environmental samplings, and whole genome sequencing (WGS) were performed for a hospital outbreak.

Findings:
- Superspreading event involving 12 patients and 9 healthcare workers (HCWs) occurred within 4 days in 3 of 6 cubicles at an old-fashioned general ward with no air exhaust built within the cubicles.
- Environmental contamination by SARS-CoV-2 RNA was significantly higher in air grilles than high-touch clinical surfaces.
- Six (66.7%) of 9 contaminated air exhaust grilles were located outside patient cubicle.
- The clinical attack rate of patients was significantly higher than HCWs (15.4%, 12/78 exposed-patients vs 4.6%, 9/195 exposed-HCWs, p=0.005).
- Clinical attack rate of ward-based HCWs was significantly higher than non-ward-based HCWs (8.1%, 7/68 vs 1.8%, 2/109, p=0.045).
- The outbreak strains belong to SARS-CoV-2 lineage, B.1.36.27 with the unique S-T470N mutation on WGS.

Conclusion
This nosocomial point source superspreading due to possible airborne transmission demonstrated the need for stringent SARS-CoV-2 screening at admission to healthcare facilities and better architectural design of the ventilation system to prevent such outbreaks. Portable high-efficiency particulate filters were installed in each cubicle to improve ventilation before resumption of clinical service.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods: retrospective case-control study across a single healthcare system of non-hospitalized patients, with documented positive SARS-CoV-2 testing, risk factors for severe COVID-19, and referrals for bamlanivimab via emergency use authorization.
Findings:
> The most reported and documented symptoms of COVID-19 illness at initial presentation were cough (65.8%), fever (42.3%), myalgias (37.7%), and fatigue (34.8%).
> The 30-day hospitalization rate was significantly lower among patients who received bamlanivimab (7.3% v 20.0%, RR 0.37), and the number needed to treat was 8.
> On logistic regression, odds of hospitalization were increased in patients not receiving bamlanivimab and with a higher number of pre-specified comorbidities (OR 4.19 CI: 1.31-2.16, p<0.001; OR 1.68, CI: 2.12-8.30, p<0.001, respectively).
Ambulatory patients with COVID-19 who received bamlanivimab had a lower 30-day hospitalization than control patients in real-world experience.
Consistently meeting physical activity guidelines was strongly associated with a reduced risk for severe COVID-19 outcomes among infected adults. |
| Br J Sports Med. | Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients | Sallis R., et al. USA | Public Health / Epidemiology | **Aim:** To compare hospitalisation rates, ICU admissions and mortality for 48 440 patients with COVID-19 who were consistently inactive, doing some activity or consistently meeting physical activity guidelines.
> Patients with COVID-19 who were consistently inactive had a greater risk of hospitalisation (OR 2.26; 95% CI 1.81-2.83), admission to the ICU (OR 1.73; 95% CI 1.18-2.55) and death (OR 2.49; 95% CI 1.334.67) due to COVID-19 than patients who were consistently meeting physical activity guidelines.
> Patients who were consistently inactive also had a greater risk of hospitalisation (OR 1.20; 95% CI 1.10-1.32), admission to the ICU (OR 1.10; 95% CI 0.93-1.29) and death (OR 1.32; 95% CI 1.09-1.60) due to COVID-19 than patients who were doing some physical activity.
Consistently meeting physical activity guidelines was strongly associated with a reduced risk for severe COVID-19 outcomes among infected adults. |
> 504 breast milk samples from 84 women (weekly sampling for 6 weeks from week 2 after one dose of vaccine).
> Mean levels of anti-SARS-CoV-2-specific IgA antibodies in the breast milk increased rapidly and were significantly elevated at 2 weeks after the first vaccine (2.05 ratio; P < .001), when 61.8% of samples tested positive, increasing to 86.1% at week 4 (1 week after the second vaccine). Mean levels remained elevated for the duration of follow-up. At week 6, 65.7% of samples tested positive.
> Anti–SARS-CoV-2–specific IgG antibodies increased at week 4 (20.5 U/mL; P = .004), when 91.7% of samples tested positive, increasing to 97% at weeks 5 and 6.
> No mother or infant experienced any serious adverse event during the study period. Mild vaccine-related adverse effects were observed in vaccinees, and fever with upper respiratory tract symptoms were observed in 4 infants.
SARS-CoV-2 specific IgA and IgG antibodies in breast milk after vaccination were found. These showed strong neutralizing effects, suggesting infant protection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet Public Health 12APR2021 | Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study | Graham M.S., et al. UK gotopaper | Public Health / Epidemiology - Variants | Aim to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility.

Methods
> Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19
> We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections.

Findings
> From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7.
> For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants.
> Infection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection.
> We found a multiplicative increase in the R_t of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, R_t fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant.

The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant.

| Lancet Infect Dis. 12APR2021 | Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study | Frampton D., et al. UK gotopaper | Public Health / Epidemiology - Variants | Describe the emergence of the B.1.1.7 variant of concern (VOC), including virological characteristics and clinical severity in contemporaneous patients with and without the variant.

Methods
> In this cohort study, samples positive for SARS-CoV-2 on PCR that were collected from Nov 9, 2020, for patients acutely admitted to one of two hospitals on or before Dec 20, 2020, in London, UK
> Poisson regression models to investigate the association between B.1.1.7 infection and severe disease

Findings
> Of 496 patients with samples positive for SARS-CoV-2 on PCR and who met inclusion criteria, 341 had samples that could be sequenced. 198 (58%) of 341 had B.1.1.7 infection and 143 (42%) had non-B.1.1.7 infection.
> No evidence of an association between severe disease and lineage (B.1.1.7 vs non-B.1.1.7) in unadjusted analyses (prevalence ratio [PR] 0·97 [95% CI 0·62–1·51]), or in analyses adjusted for hospital, sex, age, comorbidities, and ethnicity (adjusted PR 1·02 [0·76–1·38]).
> We detected no B.1.1.7 VOC-defining mutations in 123 chronically shedding immunocompromised patients or in 32 remdesivir-treated patients.
> Viral load by proxy was higher in B.1.1.7 samples than in non-B.1.1.7 samples, as measured by cycle threshold value (mean 28·8 [SD 4·7] vs 32·0 [4·8]; p=0·0085) and genomic read depth (1280 [1004] vs 831 [682]; p=0·0011).

Emerging evidence exists of increased transmissibility of B.1.1.7, and we found increased virus load by proxy for B.1.1.7 in our data. We did not identify an association of the variant with severe disease. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 09APR2021 | Seroprevalence and correlates of SARS-CoV-2 neutralizing antibodies from a population-based study in Bonn, Germany | Aziz N.A., et al. Germany gotopaper | Immunology | **Aim:** to estimate the seroprevalence and temporal course of SARS-CoV-2 neutralizing antibodies.
Anti-SARS-CoV-2 IgG levels were assessed by immunoassay, followed by confirmatory testing of borderline and positive test results with a recombinant spike-based immunofluorescence assay and a plaque reduction neutralization test (PRNT). Borderline or positive individuals were retested after 4-5 months.
> At baseline, 4771 persons participated (April 24th - June 30th, 2020).
> **Seroprevalence** was 0.97% (95% CI: 0.72–1.30) by immunoassay and 0.36% (95% CI: 0.21–0.61) when considering only those with two additional positive confirmatory tests.
> Antibody response magnitude, total number of symptoms experienced, and presence of particular symptoms were associated with the presence of neutralizing antibodies in those with a positive immunoassay test result.
> In those with a borderline immunoassay result, the presence of neutralizing antibodies was extremely rare and apparently transient.
> About 20% of PRNT+ individuals lost their neutralizing antibodies within 5 months. Neutralizing antibodies are detectable in only one third of those with a positive immunoassay result, and wane relatively quickly.
> The probability of neutralizing antibody loss was inversely related to the magnitude of the IgG response.
> Self-referral bias can lead to substantial overestimation of seroprevalence. |
| Lancet 09APR2021 | SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN) | Hall V.J., et al. UK gotopaper | Public Health / Epidemiology | Investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection.
Methods
> The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests.
> A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts.
Findings
> From June 18, 2020, to Dec 31, 2020, 30625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021.
> 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17383 participants, contributing 2971436 person-days of follow-up.
> The incidence density was 7.6 reinfections per 100000 person-days in the positive cohort, compared with 57.3 primary infections per 100000 person-days in the negative cohort, between June, 2020, and January, 2021.
> The adjusted IRR was 0.159 for all reinfections (95% CI 0.13–0.19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days.
> A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection. This time period is the minimum probable effect because seroconversions were not included. This study shows that previous infection with SARS-CoV-2 induces effective immunity to future infections in most individuals. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEJM 09APR21</td>
<td>Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination</td>
<td>Schultz, N., et al. Norway gotopaper</td>
<td>Vaccines</td>
<td>Case report: findings in five patients who presented with venous thrombosis and thrombocytopenia 7 to 10 days after receiving the first dose of the AZ vaccine against Covid-19.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Health care worker, 32 to 54 years of age.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> All five patients were negative for antibodies to SARS-CoV-2 nucleocapsid protein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> All five patients had high levels of antibodies to platelet factor 4–polyanion complexes;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> No previous exposure to heparin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Platelets in serum from Patients 1, 3, 4, and 5 were clearly activated in the absence of added heparin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Four of the patients had severe cerebral venous thrombosis with intracranial hemorrhage, and the outcome was fatal in three.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings indicate a shared pathophysiological basis of the condition in these five patients and should raise awareness that a syndrome similar to autoimmune heparin-induced thrombocytopenia may occur in some persons after vaccination with AZ vaccine (five cases in a population of more than 130,000 vaccinated persons)</td>
</tr>
<tr>
<td>NEJM 09APR21</td>
<td>Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination</td>
<td>Greinacher, A., et al. International gotopaper</td>
<td>Vaccines</td>
<td>Aim</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assesement of clinical and laboratory features of 11 patients in Germany and Austria developing thrombosis or thrombocytopenia after AZ vaccination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ELISA detection of platelet factor 4 (PF4)–heparin antibodies and a modified (PF4-enhanced) platelet-activation test to detect platelet-activating antibodies under various reaction conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Included in this testing were samples from patients who had blood samples referred for investigation of vaccine-associated thrombotic events, with 28 testing positive on a screening PF4–heparin immunoassay.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 11 patients, including 9 women. Median age: 36 years (22 to 49).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Patients presented with one or more thrombotic events beginning 5 to 16 days after vaccination. 9 had cerebral venous thrombosis, 3 had splanchnic-vein thrombosis, 3 had pulmonary embolism, and 4 had other thromboses; of these patients, 6 died. 5 patients had disseminated intravascular coagulation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> One patient presented with fatal intracranial hemorrhage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> None of the patients had received heparin before symptom onset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> All 28 patients who tested positive for antibodies against PF4–heparin tested positive on the platelet-activation assay in the presence of PF4 independent of heparin. Platelet activation was inhibited by high levels of heparin, Fc receptor–blocking monoclonal antibody, and immune globulin (10 mg per milliliter). Additional studies with PF4 or PF4–heparin affinity purified antibodies in 2 patients confirmed PF4-dependent platelet activation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
Methods: open-label, parallel-group, phase 2, randomised controlled trial (Steroids in COVID-19; STOIC) of inhaled budesonide, compared with usual care, in adults within 7 days of the onset of mild COVID-19 symptoms.
-Primary endpoint: COVID-19-related urgent care visit, including emergency department assessment or hospitalisation.
-Secondary outcomes: self-reported clinical recovery (symptom resolution).
Findings:
> For the per-protocol population (n=139), the primary outcome occurred in ten (14%) of 70 participants in the budesonide group and one (1%) of 69 participant in the usual care group.
> For the Intention-to-treat population, the primary outcome occurred in 11 (15%) participants in the usual care group and two (3%) participants in the budesonide group.
> Clinical recovery was 1 day shorter in the budesonide group compared with the usual care group (median 7 days in the budesonide group vs 8 days in the usual care group).
> The mean total score change in the CCQ and FLUPro over 14 days was significantly better in the budesonide group compared with the usual care group.
> Budesonide was safe, with only five (7%) participants reporting self-limiting adverse events.
Early administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery after early COVID-19. |
| *JAMA* 07APR21 | Symptoms and Functional Impairment Assessed 8 Months After Mild COVID-19 Among Health Care Workers | Havervall S., et al. Sweden [gotopaper](#) | Public Health / Epidemiology | **Aim:** to investigated COVID-19–related long-term symptoms in health care professionals
Methods: The COMMUNITY (COVID-19 Biomarker and Immunity) study investigates long-term immunity after mild COVID-19. Between April 15, 2020, and May 8, 2020, health care professionals at Danderyd Hospital, Stockholm, Sweden, were invited to participate.
Findings:
> Seropositive participants who reported no or mild prior symptoms had a median age of 43 years and 83% were women.
> Comparing seropositive vs seronegative participants, 26% vs 9% reported at least 1 moderate to severe symptom lasting for at least 2 months (RR, 2.9) and 15% vs 3% reported at least 1 moderate to severe symptom lasting for at least 8 months (RR, 4.4).
> The most common moderate to severe symptoms lasting for at least 2 months in the seropositive group were anosmia, fatigue, ageusia, and dyspnea.
> Of the seropositive participants, 8% reported that their long-term symptoms moderately to markedly disrupted their work life, compared with 4% of the seronegative participants (RR, 1.8).
> 15% reported their long-term symptoms moderately to markedly disrupted their social life, compared with 6% of the seronegative participants (RR, 2.5).
> 12% reported that their long-term symptoms moderately to markedly disrupted their home life, compared with 5% of the seronegative participants (RR, 2.3).
A considerable portion of low-risk individuals with mild COVID-19 reported a diversity of long-term symptoms, and these symptoms disrupted work, social, and home life. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 08APR21 | Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine | Krammer F., et al. USA | Vaccines | Immune response to one dose of BNT162b2 or mRNA-1273 in persons with previous Covid-19.
Methods: 110 PARIS study participants with or without documented preexisting SARS-CoV-2 immunity. 67 seronegative participants and 43 seropositive participants receiving their first spike mRNA vaccine dose in 2020
Findings: > The majority of seronegative participants had variable and relatively low SARS-CoV-2 IgG responses within 9 to 12 days after vaccination. In contrast, participants with SARS-CoV-2 antibodies at baseline before the first vaccine injection rapidly developed uniform, high antibody titers within days after vaccination
> The antibody titers of vaccinees with preexisting immunity were 10 to 45 times as high as those of vaccinees without preexisting immunity
> No increase in antibody titers was observed in the Covid-19 survivors who received the second vaccine dose (3-fold in non-infected participants).
> No substantial difference was noted in the dynamics of antibody responses elicited by the Pfizer and Moderna vaccines after the first dose.
> Vaccine recipients with preexisting immunity had systemic side effects at higher frequencies than those without preexisting immunity (fatigue, headache, chills, muscle pain, fever, and joint pain, in order of decreasing frequency).
Conclusion: A single dose of mRNA vaccine elicited rapid immune responses in seropositive participants, with postvaccination antibody titers that were similar to or exceeded titers found in seronegative participants who received two vaccinations. Whether a single dose of mRNA vaccine provides effective protection in seropositive persons requires investigation. |
| NEJM 07APR21 | Neutralizing Response against Variants after SARS-CoV-2 Infection and One Dose of BNT162b2 | Lustig Y., et al. Israel | Vaccines - Variants | Aim: to investigate whether one dose of the BNT162b2 vaccine would increase neutralizing activity against the B.1.1.7, B.1.351, and P.1 variants in persons previously infected with SARS-CoV-2.
Methods: microneutralization assay with isolates of the original virus (sublineage B.1) and the B.1.1.7, B.1.351, and P.1 variants on 6 HCW previously infected with the original variant of SARS-CoV-2 and vaccinated (3 time points: 1-12 weeks after natural infection, immediately before vaccination, and 1-2 weeks after vaccination).
Findings: > Time point 1: Samples obtained had neutralizing activity against the original virus and the B.1.1.7 and P.1 variants, with geometric mean titers (GMT) of 456, 256, and 71, respectively, but had little or no neutralizing activity against the B.1.351 variant (GMT 8).
> Time point 2: GMT were 81, 40, 36, and 7 for the original virus and the B.1.1.7, P.1, and B.1.351 variants, respectively.
> Time point 3: GMT were 9195, 8192, 2896, and 1625 for the original virus and the B.1.1.7, P.1, and B.1.351 variants, respectively — that is, the titers after vaccination were 114, 203, 81, and 228 times as high as the titers immediately before vaccination.
This study showed that one vaccine dose substantially increased neutralizing activity against all variants tested, highlighting the importance of vaccination even in previously infected patients. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 07APR2021 | Cross-Reactive Neutralizing Antibody Responses Elicited by SARS-CoV-2 501Y.V2 (B.1.351) | Moyo-Gwete T., et al. South Africa [gotopaper](#) | Vaccines - Variants | **Aim:** Assessment of the immune response to 501Y.V2 (B.1.351) and its cross-reactivity with other variants. Samples were collected when 501Y.V2 prevalence was 90% in Cape Town.
Findings: > 501Y.V2 elicited high-titer binding and neutralizing antibody responses. > Titers of binding antibodies to RBD and the full spike protein of the original variant were highly correlated with titers of binding antibodies to the corresponding proteins of 501Y.V2. > Plasma samples (46) had higher titers to the spike protein of 501Y.V2 than to the spike protein of the original variant (mean of 1.7 times as high), but high-level binding to the original variant remained. > 53 of 57 tested samples maintained neutralization activity against the original variant, with a geometric mean titer of 203 (95% CI, 141-292), approximately one third of the titer against the 501Y.V2 variant. When limiting the analysis to 22 sequencing-confirmed infection with 501Y.V2 with positive titers of binding antibodies, the same pattern was observed. > Testing a subset of 10 plasma samples against the 501Y.V3 (P.1) variant revealed high levels of neutralization, with some samples showing higher potency against 501Y.V3 (P.1) than against 501Y.V2, possibly due to the very different N-terminal domains. > 501Y.V2 elicits robust neutralizing antibody responses against both the original variant and 501Y.V3 (P.1), indicating high levels of cross-reactivity. |
| NEJM 07APR2021 | Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351 | Shen X., et al. USA [gotopaper](#) | Vaccines - Variants | **Aim:** to measure the neutralizing activity against SARS-CoV-2 variant B.1.429 (California) and B.1.351 (South Africa) of serum specimens obtained from 14 convalescent persons and from 49 recipients of mRNA-1273 (26) or protein nanoparticle vaccine NVX-CoV2373 (23).
Findings > As compared with the D614G variant, B.1.429 was approximately 2 to 3 times less sensitive to neutralization by convalescent serum and by serum samples obtained from vaccinated persons > B.1.351 was approximately 9 to 14 times less sensitive to neutralization. > Neutralisation assays with pseudoviruses: - B.1.429 was neutralized by convalescent serum and by vaccinee serum. The geometric mean ID50 titers against B.1.429 were **3.1 times** (**1.4-8.8**) lower than those against D614G for convalescent serum and were **2.0** and **2.5 times** (**0.7-8.6**) lower than against D614G for serum from persons who had received the mRNA-1273 and NVX-CoV2373 vaccines, respectively. - The geometric mean ID50 titer against B.1.351 was **13.1 times lower** than against D614G for convalescent serum and **9.7 times** and **14.5 times lower** than against D614G for serum from persons who had received the mRNA-1273 and NVX-CoV2373 vaccines, respectively.
These results suggest that vaccine-elicited neutralizing antibodies are likely to remain effective against the B.1.429 variant. The magnitude of resistance seen with the B.1.351 variant is of greater concern with respect to current vaccines. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood 06APR2021</td>
<td>Post-Discharge Thromboembolic Outcomes and Mortality of Hospitalized COVID-19 Patients: The CORE-19 Registry</td>
<td>Giannis D., et al. USA gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Thromboembolic events including venous thromboembolism (VTE), arterial thromboembolism (ATE), and mortality from sub-clinical thrombotic events occur frequently in COVID-19 inpatients.</td>
</tr>
</tbody>
</table>

Findings:
> mRNA1273 elicited binding and neutralizing antibodies in 33 healthy adult participants 180 days after the second dose of 100 μg (day 209).
> 5 protein binding antibodies had geometric mean end-point titers of 92,451 (95% [CI], 57,148 to 149,562) in participants 18 to 55 years of age, 62,424 (95% CI, 36,765 to 105,990) in those 56 to 70 years of age, and 49,373 (95% CI, 25,171 to 96,849) in those 71 years of age or older.
> All the participants had detectable neutralization activity, with 1050 GMTs of 406 (95% CI, 286 to 578), 171 (95% CI, 95 to 307), and 131 (95% CI, 69 to 251) depending on age.
> The estimated half-life of binding antibodies after day 43 for all the participants ranged between 52 and 109 days depending on the method used for assessment. The neutralizing antibody half-life estimates was between 68 and 202 days.
> Antibodies that were elicited by mRNA-1273 persisted through 6 months after the second dose, as detected by three distinct serologic assays.
> Ongoing studies are monitoring immune responses beyond 6 months as well as determining the effect of a booster dose to extend the duration and breadth of activity against emerging viral variants.

Conclusion:
Our data show antibody persistence and thus support the use of this vaccine in addressing the Covid-19 pandemic.

Findings:
> Among 4,906 patients (53.7% male) mean age was 61.7 years. Comorbidities included hypertension (38.6%), diabetes (25.1%), obesity (18.9%), and cancer history (13.1%)
> Post-discharge thromboprophylaxis was prescribed in 13.2%. VTE rate was 1.55%, ATE 1.71%, ACM 4.83%, and MB 1.73%.
> The composite primary outcome rate was 7.13% and was significantly associated with advanced age (OR: 3.66, 95% CI: 2.84-4.71), prior VTE (OR: 2.99, 95% CI: 2.00-4.47), ICU stay (OR: 2.22, 95% CI: 1.78-2.93), chronic kidney disease (CKD) (OR: 2.10, 95% CI: 1.47-3.0), peripheral arterial disease (OR: 2.04, 95% CI: 1.10-3.80), carotid occlusive disease (OR: 2.02, 95% CI: 1.30-3.14), IMPROVE-DD VTE score ≥4 (OR: 1.51, 95% CI: 1.06-2.14), and coronary artery disease (OR: 1.50, 95% CI: 1.04-2.17).
> Post-discharge anticoagulation was significantly associated with reducing the primary outcome (OR: 0.54, 95% CI: 0.47-0.81).

Conclusions:
Post-discharge VTE, ATE, and ACM occur frequently following COVID-19 hospitalization. Advanced age, cardiovascular risk factors, CKD, IMPROVE-DD VTE score ≥4, and ICU stay increase risk. Post-discharge anticoagulation reduced risk by 46%.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>

> Among 236,379 patients diagnosed with COVID-19, the estimated incidence of a neurological or psychiatric diagnosis in the following 6 months was 33.62% (95% CI 33.17–34.07), with 12.84% (12.36–13.33) receiving their first such diagnosis.

> For patients who had been admitted to an intensive therapy unit (ITU), the estimated incidence of a diagnosis was 46.42% (44.78–48.09) and for a first diagnosis was 25.79% (23.50–28.25).

> The whole COVID-19 cohort had estimated incidences of 0.56% (0.50–0.63) for intracranial haemorrhage, 2.10% (1.97–2.23) for ischaemic stroke, 0.11% (0.08–0.14) for parkinsonism, 0.67% (0.59–0.75) for dementia, 17.39% (17.04–17.74) for anxiety disorder, and 1.40% (1.30–1.51) for psychotic disorder, among others.

> In the group with ITU admission, estimated incidences were 2.66% (2.24–3.16) for intracranial haemorrhage, 6.92% (6.17–7.76) for ischaemic stroke, 0.26% (0.15–0.45) for parkinsonism, 1.74% (1.31–2.30) for dementia, 19.15% (17.90–20.48) for anxiety disorder, and 2.77% (2.31–3.33) for psychotic disorder.

> Most diagnostic categories were more common in patients who had COVID-19 than in those who had influenza (hazard ratio [HR] 1.44, 95% CI 1.40–1.47, for any diagnosis; 1.78, 1.68–1.89, for any first diagnosis) and those who had other respiratory tract infections (1.16, 1.14–1.17, for any diagnosis; 1.32, 1.27–1.36, for any first diagnosis).

> HRs were higher in patients who had more severe COVID-19 (eg, those admitted to ITU compared with those who were not: 1.58, 1.50–1.67, for any diagnosis; 2.87, 2.45–3.35, for any first diagnosis).

Substantial neurological and psychiatric morbidity were observed in the 6 months after COVID-19 infection. Risks were greatest in, but not limited to, patients who had severe COVID-19. |

| JAMA Netw Open 01APR2021 | Mortality and Readmission Rates Among Patients With COVID-19 After Discharge From Acute Care Setting With Supplemental Oxygen | Banerjee J., et al. USA gotopaper | Clinics | Aim: to assess outcomes of patients with COVID-19 pneumonia discharged via the expected practice approach to home or quarantine housing with supplemental home oxygen.

Methods: retrospective cohort study of 621 patients with COVID-19 discharged with supplemental home oxygen (at least 3 L per minute of oxygen) from emergency department and inpatient encounters at 2 large urban medical centers.

Main Outcomes and Measures: All-cause mortality and all-cause 30-day return admission.

Findings:

> A total of 621 patients with COVID-19 pneumonia (404 male [65.1%] and 217 female [34.9%]) were discharged with home oxygen.

> Median age of these patients was 51 years (interquartile range, 45–61 years), with 149 (24.0%) discharged from the emergency department and 472 (76%) discharged from inpatient encounters.

> The all-cause mortality rate was 1.3% (95% CI, 0.6%–2.5%) and the 30-day return hospital admission rate was 8.5% (95% CI, 6.2%–10.7%) with a median follow-up time of 26 days (interquartile range, 15–55 days).

> No deaths occurred in the ambulatory setting.

Ambulatory management of COVID-19 with home oxygen has an acceptable safety profile, and the expected practice approach may help optimize outcomes. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Med. 01APR2021 | Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2 | Ebinger J.E., et al. USA [gotopaper](#) | Vaccines | **Background:**
Detectable presence of anti-SARS-CoV-2 antibodies and virus-specific T cells suggest possible alternate vaccination strategies for previously infected individuals. As thus, individuals with prior infection might have naturally acquired immunity that could be sufficiently enhanced by a single dose rather than a double dose of administered vaccine.

Methods:
Cohort of BNT162b2 (Pfizer–BioNTech) mRNA vaccine recipients (n=1,090). Antibody levels were measured at three time points: before or up to 3 d after dose 1; within 7–21 d after dose 1; and within 7–21 d after dose 2.

Findings:
> For both IgG(N) (representing response to prior infection) and IgG(S-RBD) (representing response to either prior infection or vaccine), individuals with prior SARS-CoV-2 infection had higher antibody levels at all time points.
> IgG(S-RBD) levels were not significantly different among previously infected individuals after a single dose and infection-naive individuals who had received two doses.
> ACE2 binding inhibition was significantly higher among previously infected individuals than infection-naive individuals after a single vaccine dose, with no between-group difference seen after the second dose.
> Post-vaccine symptoms were more prominent for those with prior infection after the first dose, but symptomology was similar between groups after the second dose.

Conclusions:
Individuals previously infected with SARS-CoV-2 developed vaccine-induced antibody responses after a single dose of the BNT162b2 mRNA vaccine similar to those seen after a two-dose vaccination in infection-naive individuals.

| Am J Obstet Gynecol 25MAR2021 | COVID-19 vaccine response in pregnant and lactating women: a cohort study | Gray K.J., et al. USA [gotopaper](#) | Vaccines | **Aim:** to evaluate the immunogenicity and reactogenicity of COVID-19 mRNA vaccination in pregnant and lactating women compared to: (1) non-pregnant controls and (2) natural COVID-19 infection in pregnancy.
> 131 reproductive-age vaccine recipients (84 pregnant, 31 lactating, and 16 non-pregnant)

Findings
> Vaccine-induced antibody titters were equivalent in pregnant and lactating compared to non-pregnant women (median [IQR] 5.59 [4.68-5.89] pregnant, 5.74 [5.06-6.22] lactating, 5.62 [4.77-5.98] non-pregnant, p = 0.24).
> All titters were significantly higher than those induced by SARS-CoV-2 infection during pregnancy (p < 0.0001).
> Vaccine-generated antibodies were present in all umbilical cord blood and breastmilk samples.
> Neutralizing antibody titters were lower in umbilical cord compared to maternal sera, but it was not achieve statistically significant (median [IQR] 104.7 [61.2-188.2] maternal sera, 52.3 [11.7-69.6] cord sera, p=0.05).
> The second vaccine dose (boost dose) increased SARS-CoV-2-specific IgG, but not IgA, in maternal blood and breastmilk.
> No differences were noted in reactogenicity across the groups.

COVID-19 mRNA vaccines generated robust humoral immunity in pregnant and lactating women, significantly greater than the response to natural infection. Immune transfer to neonates occurred via placenta and breastmilk.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| BMJ 31MAR2021 | Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study | Ayoubkhani D., et al. UK gotopaper | Public Health / Epidemiology - Long Covid | **Aim:** to quantify rates of organ specific dysfunction in a cohort of 47780 individuals with covid-19 after discharge from hospital compared with a matched control group from the general population.
> Over a mean follow-up of 140 days, nearly a third of individuals who were discharged from hospital after acute covid-19 were readmitted (14 060 of 47 780) and more than 1 in 10 (5875) died after discharge, with these events occurring at rates 4 and 8 times greater, respectively, than in the matched control group.
> Rates of respiratory disease (P<0.001), diabetes (P<0.001), and cardiovascular disease (P<0.001) were also significantly raised in patients with covid-19, with 770 (95% CI 758-783), 127 (122-132), and 126 (121-131) diagnoses per 1000 person years, respectively.
> Rate ratios were greater for individuals aged <70 than for those aged ≥70, and in ethnic minority groups compared with the white population. Largest differences was seen for respiratory disease (10.5 (95% CI 9.7-11.4) for age < 70 years v 4.6 (4.3 to 4.8) for age ≥70, and 11.4 (9.8-13.3) for non-white v 5.2 (5.0-5.5) for white individuals).
Individuals discharged from hospital after covid-19 had increased rates of multiorgan dysfunction compared with the expected risk in the general population. The increase in risk was not confined to the elderly and was not uniform across ethnicities. |
| Lancet 30MAR2021 | Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial | Emary K.R.W., et al. UK gotopaper | Vaccines | **Background:** A new variant of SARS-CoV-2, B.1.1.7, emerged as the dominant cause of COVID-19 disease in the UK from November, 2020. We report a post-hoc analysis of the efficacy of the adenoviral vector vaccine, ChAdOx1 nCoV-19 (AZD1222), against this variant.
Methods:
> Volunteers (aged ≥18 years), enrolled during the phase 2/3 vaccine efficacy studies in the UK receiving randomly ChAdOx1 nCoV-19 or a meningococcal conjugate control (MenACWY) vaccine
> Upper airway swabs on a weekly basis and recording of COVID-19 disease symptoms if any
> Swabs were tested by nucleic acid amplification test (NAAT) for SARS-CoV-2 and positive samples were sequenced
> Assessment of neutralising antibody responses against the B.1.1.7 lineage and a canonical non-B.1.1.7 lineage (Victoria).
Findings:
> 8534 participants, 6636 (78%) aged 18–55 years and 5065 (59%) female.
> 520 participants developed SARS-CoV-2 infection.
> 1466 NAAT positive nose and throat swabs were collected from these participants during the trial.
> Of these, 401 swabs from 311 participants were successfully sequenced.
> Laboratory virus neutralisation activity by vaccine-induced antibodies was lower against the B.1.1.7 variant than against the Victoria lineage (geometric mean ratio 8·9, 95% CI 7·2–11·0).
> Clinical vaccine efficacy against symptomatic NAAT positive infection was 70·4% (95% CI 43·6–84·5) for B.1.1.7 and 81·5% (67·9–89·4) for non-B.1.1.7 lineages.
Conclusion: ChAdOx1 nCoV-19 showed reduced neutralisation activity against the B.1.1.7 variant compared with a non-B.1.1.7 variant in vitro, but the vaccine showed efficacy against the B.1.1.7 variant of SARS-CoV-2. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 30MAR2021</td>
<td>Antibody evasion by the P.1 strain of SARS-CoV-2</td>
<td>Dejnirattisai W. et al, UK</td>
<td>Virology</td>
<td>Examiniation of an isolate of P.1 variant cultured from a throat swab taken from an infected patient in Manaus, Brazil in December 2020 and comparison of its interactions with serum and antibodies with those of three other viruses, an early isolate, B.1.1.7 and B.1.351.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Assessment of the ability of immune sera induced by infection with early strains of SARS-CoV-2, or by vaccination with the Oxford-AstraZenca or Pfizer-BioNTech vaccines to neutralize P.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Reduction in the neutralizing capacity of immune serum to P.1 similar to the reduction seen with B.1.1.7, but not as severe as that seen with B.1.351.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Increased affinity of P.1 137 RBD for ACE2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Investigation of the structural basis of this through crystallography.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Neutralization by a panel of potent monoclonal antibodies which block RBD/ACE2interaction: mAb 222, which contacts both K417 and N501, is resistant to the 141 501Y and 417T/N mutations found in the P.1/B1.351 strains.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Dissection of the basis for this via a series of high resolution structures of RDB-Fab complexes and based on this restore neutralization of certain antibodies by swapping the light chain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusion: P1 can escape neutralization by a number of monoclonal antibodies including some being developed for prophylactic or therapeutic use, while other antibodies with epitopes away from the mutated RBD residues retain broad neutralization.</td>
</tr>
<tr>
<td>Nature Commun. 30MAR2021</td>
<td>Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial</td>
<td>Jagannathan P., et al, USA</td>
<td>Therapeutics</td>
<td>Aim: to determine whether a single, 180 mcg subcutaneous dose of Peginterferon Lambda-1a (Lambda) within 72 hours of diagnosis could shorten the duration of viral shedding (primary endpoint) or symptoms (secondary endpoint)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods: randomized, single-blind, placebo-controlled trial in 120 outpatients with mild to moderate COVID-19, of whom 110 (91.7%) completed 28 days of follow up. Participants were recruited within 72 h of diagnosis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings: > 60 patients receiving Lambda and 60 receiving placebo, the median time to cessation of viral shedding was 7 days (hazard ratio [HR] = 0.81; 95% confidence interval [CI] 0.56 to 1.19).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Symptoms resolved in 8 and 9 days in Lambda and placebo, respectively, and symptom duration did not differ significantly between groups (HR 0.94; 95% CI 0.64 to 1.39).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Both Lambda and placebo were well-tolerated, though liver transaminase elevations were more common in the Lambda vs. placebo arm (15/60 vs 5/60; p = 0.027).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A single dose of subcutaneous Peginterferon Lambda-1a neither shortened the duration of SARS-CoV-2 viral shedding nor improved symptoms in outpatients with uncomplicated COVID-19.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> The viral load was substantially reduced for infections occurring 12–37 days after the first dose of vaccine, as compared to 0-11 days.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> In vaccinated patients, viral load was comparable to that observed in vaccinated patients 0-11 days after first injection, but significantly higher than that observed at 12-37 days.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> The differences of RT-PCR Ct values in post-vaccination and matched unvaccinated patients represent a decrease of 2.8–4.5-fold in viral load in vaccinated individuals, according to a regression model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>These reduced viral loads hint at a potentially lower infectiousness, further contributing to vaccine effect on virus spread.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Nature 29MAR2021 | Escape of SARS-CoV-2 S01Y.V2 from neutralization by convalescent plasma | Cele S., et al. International gotopaper | Therapeutics - Variants | Live virus neutralization assay to compare neutralization of a non-VOC variant versus the S01Y.V2 variant using plasma collected from adults hospitalized with COVID-19 from two South African infection waves, with the second wave dominated by S01Y.V2 infections. **Findings:**
> Sequencing demonstrated that infections in first wave plasma donors were with viruses harbouring none of the S01Y.V2-defining mutations, except for one with the E484K mutation in the receptor binding domain.
> S01Y.V2 virus was effectively neutralized by plasma from second wave infections and first wave virus was effectively neutralized by first wave plasma.
> In cross-neutralization, S01Y.V2 virus was poorly neutralized by first wave plasma, with a 15.1-fold drop relative to S01Y.V2 neutralization by second wave plasma across participants.
> Second wave plasma cross-neutralization of first wave virus was more effective, showing only a 2.3-fold decline relative to first wave plasma neutralization of first wave virus. **Conclusion:** Effective neutralization of first wave virus by S01Y.V2 infection elicited plasma provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages. |
| Nature Commun. 29MAR2021 | A haemagglutination test for rapid detection of antibodies to SARS-CoV-2 | Townsend A., et al. USA gotopaper | Diagnostics | Aim: to describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. **Methods:** simple HA test for the detection of Abs to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. In order to link the SARS-CoV-2 RBD to red cells, they selected the single domain antibody (nanobody) IH46, specific for a conserved epitope on glycophorin A, via a short (GSG)2 linker to produce the fusion protein IH4-RBD-6H. **Findings:**
> HAT functions as a viable test for the presence of antibodies to the RBD of the SARS-CoV-2 spike protein in stored serum/plasma samples, using O–ve red cells as indicators
> The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. |
| Clin Infect Dis. 27MAR2021 | Assessing asymptomatic, pre-symptomatic and symptomatic transmission risk of SARS-CoV-2 | Wu P., et al. China gotopaper | Public Health / Epidemiology | **Methods:**
> Detailed information on transmission events and symptom status based on laboratory-confirmed patient data and contact tracing data from four provinces and one municipality in China
> Estimated the variation in risk of transmission over time, and the severity of secondary infections, by symptomatic status of the infector. **Findings:**
> 393 symptomatic index cases with 3136 close contacts and 185 asymptomatic index cases with 1078 close contacts included into the study
> The secondary attack rate among close contacts of symptomatic and asymptomatic index cases were 4.1% (128/3136) and 1.1% (12/1078), respectively, corresponding to a higher transmission risk from symptomatic cases than from asymptomatic cases (OR: 3.79, 95% CI: 2.06, 6.95)
> Approximately 25% (32/128) and 50% (6/12) of the infected close contacts were asymptomatic from symptomatic and asymptomatic index cases
> Pre-symptomatic transmission of COVID-19 accounted for 38% of all infections occurred from exposure to symptomatic cases.
> Infected contacts of asymptomatic index cases were more likely to be asymptomatic and less likely to be severe. **Asymptomatic and pre-symptomatic transmission play an important role in spreading infection, although asymptomatic cases pose a lower risk of transmission than symptomatic cases. Early case detection and effective test-and-case measures are important to reduce transmission.** |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 26MAR2021 | N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection | Shan D., et al, Germany/USA gotopaper | Diagnostics | Aim: to describe the development of a SARS-CoV-2 antigen test using Simoa technology to quantify N-protein in serum/plasma, dried blood microsamples (DBS), and saliva.
Methods: SARS-CoV-2 N-protein and anti-SARS-CoV-2 spike IgG were quantified directly in serum and plasma from venous collection, capillary blood acquired by finger-stick DBS devices (DBS), and saliva.
Findings:
- Compared to molecular testing, >90% PPA of SARS-CoV-2-positive patients and >98% negative percent agreement (NPA) were observed in all matrices within 7 days of positive PCR test, both for asymptomatic and symptomatic patients.
- N-protein load decreases as anti-SARS-CoV-2 spike-IgG increases, and N-protein levels correlate with RT-PCR Ct-values in saliva, and between matched saliva and capillary blood samples.
- N-protein levels in saliva are higher but more variable than levels in capillary blood.
The Simoa N-protein antigen test represents a robust SARS-CoV-2 detection tool, effectively detecting SARS-CoV-2 infection via antigen levels in blood or saliva, using non-invasive, swab-independent collection methods, with potential at home/point of care sampling. |
Methods
- Examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus
- New rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection
Results
- Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean 6-fold reduction in neutralizing titters, and 40% of samples lacked any activity against B.1.351.
- Sera from 19 individuals vaccinated twice with Pfizer Cominarty, up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G
- Neutralizing titers increased after the second vaccine dose, but were 14-fold lower against B.1.351. Sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay.
Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals. |
- Changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing.
- Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time.
The SGTF data indicate a transient shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases.
- Time-varying reproduction numbers for the VOC and cocirculating lineages were estimated using SGTF and genomic data. The best supported models did not indicate a substantial difference in VOC transmissibility among different age groups.
- There is a consensus among all analyses that the VOC has a substantial transmission advantage with a 50% to 100% higher reproduction number. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods: prospective, diagnostic accuracy study with 1195 individuals aged at least 21 years who were either symptomatic and suspected of having COVID-19 or asymptomatic and presented for screening. Peripheral blood for SARS-CoV-2 antibodies were tested using the Innovita, Wondfo, SD Biosensor, and Runkun tests, and nasopharyngeal swabs for SARS-CoV-2 antigen using the SD Biosensor test.
Antigen rapid diagnostic tests were compared with Abbott PCR testing, and antibody rapid diagnostic tests were compared with Biomerieux immunoassays. Two diagnostic algorithms that incorporated rapid diagnostic tests for symptomatic and asymptomatic patients using simulation modelling were tested.
Findings:
> 347 patients (29%) tested SARS-CoV-2 PCR-positive, 223 (19%) rapid diagnostic test antigen-positive, and 478 (40%) rapid diagnostic test antibody-positive.
> Antigen-based rapid diagnostic test sensitivity was 80.0% in the first 7 days after symptom onset, but Antibody-based rapid diagnostic tests had only 26.8% sensitivity.
> Antibody rapid diagnostic test sensitivity increased to 76.4% 14 days after symptom onset.
> Among asymptomatic participants, the sensitivity of antigen-based and antibody-based rapid diagnostic tests were 37.0% and 50.7%, respectively.
> An antigen-based retrospective algorithm applied to symptomatic patients showed 94.0% sensitivity and 91.0% specificity in the first 7 days after symptom onset.
> For asymptomatic participants, the algorithm showed a sensitivity of 34% and a specificity of 92.0%.
Rapid diagnostic tests had good overall sensitivity for diagnosing SARS-CoV-2 infection. Rapid diagnostic tests could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and onward viral transmission. |
| JAMA Netw Open 24MAR2021 | Comparison of Time to Clinical Improvement With vs Without Remdesivir Treatment in Hospitalized Patients With COVID-19 | Garibaldi B.T., et al. USA gotopaper | Therapeutics | Aim: to examine whether remdesivir administered with or without corticosteroids for treatment of COVID-19 is associated with more rapid clinical improvement in a racially/ethnically diverse population.
Exposures: No Remdesivir, Remdesivir treatment with or without corticosteroid administration.
Primary outcome: rate of clinical improvement (hospital discharge or decrease of 2 points on the World Health Organization severity score)
Secondary outcome: mortality at 28 days; Clinical improvement and time to death associated with combined remdesivir and corticosteroid treatment.
> Of 2483 consecutive admissions, 342 individuals received remdesivir, 184 of whom also received corticosteroids. Remdesivir patients were matched with admitted patients who did not receive Remdesivir.
> For these 342 patients: median age was 60 years (46-69), 55.3% were men, 80.7% self-identified as non-White race/ethnicity.
> Remdesivir recipients had a shorter time to clinical improvement than matched controls without remdesivir treatment (median, 5.0 days [4.0-8.0] vs 7.0 days [4.0-10.0]; adjusted hazard ratio (HR), 1.47 [95% CI, 1.22-1.79]).
> Remdesivir recipients had a 28-day mortality rate of 7.7% compared with 14.0% among matched controls, but this difference was not statistically significant in the time-to-death analysis (adjusted HR, 0.70; 95% CI, 0.38-1.28).
> The addition of corticosteroids to remdesivir was not associated with a reduced hazard of death at 28 days (adjusted HR, 1.94; 95% CI, 0.67-5.57).
In this study of adults hospitalized with COVID-19, receipt of remdesivir was associated with faster clinical improvement. Remdesivir plus corticosteroid administration did not reduce the time to death compared with remdesivir administered alone. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Lancet 23MAR2021 | Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study | Wan N.C., et al. Singapore [gotopaper](#) | Immunology | **Aim:** to investigate the peak levels and dynamics of neutralising antibody waning and IgG avidity maturation over time, and correlate this with clinical parameters, cytokines, and T-cell responses.
Methods: longitudinal study of patients who had recovered from COVID-19 up to day 180 post-symptom onset by monitoring changes in neutralising antibody levels using a previously validated surrogate virus neutralisation test.
Findings: >Five distinctive patterns of neutralising antibody dynamics were identified as follows:
 - Negative: individuals who did not, at our intervals of sampling, develop neutralising antibodies at the 30% inhibition level (19 [12%] of 164 patients).
 - Rapid waning: individuals who had varying levels of neutralising antibodies from around 20 days after symptom onset, but seroreverted in less than 180 days (44 [27%] of 164 patients).
 - Slow waning: Individuals who remained neutralising antibody-positive at 180 days post-symptom onset (52 [29%] of 164 patients).
 - Persistent: although with varying peak neutralising antibody levels, these individuals had minimal neutralising antibody decay (52 [32%] of 164 patients).
 - Delayed response, a small group that showed an unexpected increase of neutralising antibodies during late convalescence (at 90 or 180 days after symptom onset; three [2%] of 164 patients).
>Persistence of neutralising antibodies was associated with disease severity and sustained level of pro-inflammatory cytokines, chemokines, and growth factors. By contrast, T-cell responses were similar among the different neutralising antibody dynamics groups. **Neutralising antibody response dynamics in patients who have recovered from COVID-19 vary greatly, and prediction of immune longevity can only be accurately determined at the individual level.** |
| JAMA Netw Open 22MAR2021 | Association of Age With SARS-CoV-2 Antibody Response | Yang H.S., et al. USA [gotopaper](#) | Immunology | **Aim:** To investigate the association of age with the quantity and quality of SARS-CoV-2 antibody responses.
Methods: Cross-sectional study evaluating 31,426 SARS-CoV-2 antibody tests from pediatric and adult patients. Data were collected from a New York City hospital from April 9 to August 31, 2020.
Findings: >Among 31,426 antibody test results, the seroprevalence in the pediatric (197 [16.5%; 95% CI, 14.4%-18.7%]) and adult (5630 [18.6%; 95% CI, 18.2%-19.1%]) patient populations was similar.
> The SARS-CoV-2 IgG level showed a negative correlation with age in the pediatric population (r = −0.45, P < .001) and a moderate but positive correlation with age in adults (r = 0.24, P < .001).
> Patients aged 19 to 30 years exhibited the lowest IgG levels (eg, aged 25-30 years vs 1-10 years: 99 [44-180] relative fluorescence units [RFU] vs 443 [188-851] RFU).
> Children exhibited higher median (IQR) IgG levels, TAB levels, and SNAB activity compared with adolescents (eg, IgG levels: 473 RFU vs 191 RFU; P < .001) and young adults (eg, IgG levels: 473 RFU vs 85 RFU; P < .001).
> Children had higher antibody binding avidity compared with young adults, but the difference was not significant. **This study suggests that SARS-CoV-2 viral specific antibody response profiles are distinct in different age groups. Age-targeted strategies for disease screening and management as well as vaccine development may be warranted.** |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Comm. 22MAR2021 | SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19 | Wu J., et al. China gotopaper | Immunology | Aim: to quantify immunoglobulin M (IgM) and G (IgG) antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) of the spike (S) or the nucleocapsid (N) protein, and neutralizing antibodies during a period of 6 months from disease onset in 349 symptomatic COVID-19 patients.
- The positivity rate and magnitude of IgM-S and IgG-N responses increase rapidly.
- High levels of IgM-S/N and IgG-S/N at 2-3 weeks after disease onset are associated with virus control and IgG-S titers correlate closely with the capacity to neutralize SARS-CoV-2.
- Although specific IgM-S/N become undetectable 12 weeks after disease onset in most patients, IgG-S/N titers have an intermediate contraction phase, but stabilize at relatively high levels over the 6 month observation period.
- At late time points, the positivity rates for binding and neutralizing SARS-CoV-2-specific antibodies are still >70%.
These data indicate sustained humoral immunity in recovered patients who had symptomatic COVID-19, suggesting prolonged immunity. |
| Cell 20MAR2021 | SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies | Hoffmann M., et al. Germany gotopaper | Viral variants | Aim: to test sensitivity of SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa) and P.1 (Brazil) to cell entry inhibitors and antibodies, by using pseudoparticles.
- B.1.1.7, B.1.351 and P.1 do not show augmented host cell entry.
- Entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1 and EK-1-C4.
- Entry of the B.1.351 and P.1 variant is partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment.
- Entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2 vaccinated individuals.
These results suggest that SARS-CoV-2 may escape neutralizing antibody responses. |
Methods
Longitudinal cross-sectional study, population-stratified, cluster random sampling method (100 communities from the 13 districts of Wuhan). Households systematically selected. A venous blood sample taken for immunological testing (pan-immunoglobulins, IgM, IgA, and IgG antibodies against SARS-CoV-2 nucleocapsid protein and neutralising antibodies).
Findings
- 9542 individuals from 3556 families had sampled for analyses.
- 532 participants were positive for pan-immunoglobulins against SARS-CoV-2 (baseline seroprevalence of 6.92%)
- 437 of 532 (82.1%) participants who were positive for pan-immunoglobulins were asymptomatic.
- 69 (13.0%) of 532 individuals were positive for IgM antibodies, 84 (15.8%) were positive for IgA antibodies, 532 (100%) were positive for IgG antibodies, and 212 (39.8%) were positive for neutralising antibodies at baseline.
- On the basis of data from 335 individuals who attended all three follow-up visits and who were positive for pan-immunoglobulins, neutralising antibody levels did not significantly decrease over the study period
- Neutralising antibody titres were lower in asymptomatic individuals than in confirmed cases and symptomatic individuals.
- Although titres of IgG decreased over time, the proportion of individuals who had IgG antibodies did not decrease substantially
Conclusion
6.92% of a cross-sectional sample of the population of Wuhan developed antibodies against SARS-CoV-2, with 39.8% of this population seroconverting to have neutralising antibodies. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Findings:
- In vitro efficacy of favipiravir
 - Vero E6 cells: Infectious titer reductions (fold change in comparison with untreated cells) ≥ 2 with 125 µM of favipiravir and between 11 and 342 with 500 µM.
 - Caco-2 cells (no CPE with SARS-CoV-2 BavPat1 strain) infectious titer reductions around 5 with 125 µM of favipiravir and between 144 and 7721 with 500 µM.
- In vivo efficacy of favipiravir
 - Intranasal infection of Syrian hamsters with different inoculums, receiving favipiravir at the day of infection up to 2 dpi. Doses of favipiravir: 18.75, 37.5, and 75 mg/day. Effect of favipiravir in reducing infectious titers is dose dependent, in particular when low virus inocula were used to infect animal. Significant differences in virus replication in clarified lung homogenates between treated and untreated animals.
 - Antiviral effect of favipiravir correlates with incorporation of a large number of mutations into viral genomes and decrease of viral infectivity.
 - Antiviral efficacy is achieved with plasma drug exposure comparable with those previously found during human clinical trials (the highest dose of favipiravir tested is associated with signs of toxicity in animals).
Pharmacokinetic and tolerance studies are required to determine whether similar effects can be safely achieved in humans.
Conclusion:
High doses of favipiravir are associated with antiviral activity against SARS-CoV-2 infection in a hamster model. The better antiviral efficacy was observed using a preventive strategy, suggesting that favipiravir could be more appropriate for a prophylactic use. |
COVID-19 patients: NAT+, hospitalised and recovered, samples taken 48–86 days after disease onset;
Asymptomatic patients: NAT+, with no signs of symptoms
Close contacts: NAT−, no SARS-CoV-2 specific antibodies, in contact with patients between 5 days before disease onset and hospitalisation.
> Virus-specific CD4+ and CD8+ T-cell memory was observed in recovered COVID-19 patients (in 94.44% and 88.33% of patients, respectively) and close contacts (in 57.97% and 14.49%, respectively).
> The size and quality of the memory T-cell pool of COVID-19 patients are larger and better than those of close contacts.
> However, the proliferation capacity, size and quality of T-cell responses in close contacts are readily distinguishable from healthy donors, suggesting close contacts are able to gain T-cell immunity against SARS-CoV-2 despite lacking a detectable infection.
> Asymptomatic and symptomatic COVID-19 patients contain similar levels and qualities of SARS-CoV-2-specific T-cells.
> CD4+ T memory and CD8+ T memory may have contracted to a stable plateau 48–86 days after symptom onset.
> Virus-specific memory CD4+ T cell pool correlated with the titers of IgG against the S RBD region and the N protein, whereas no apparent correlation between CD8+ T cells and IgG titers was observed.
This study demonstrates the versatility and potential of memory T cells from COVID-19 patients and close contacts, which may be important for host protection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| JAMA Netw Open 19MAR2021 | Association of Vitamin D Levels, Race/Ethnicity, and Clinical Characteristics With COVID-19 Test Results | Meltzer DO., et al. USA gotopaper | Public Health / Epidemiology | Aim: To examine whether COVID-19 test results are associated with differences in vitamin D levels of 30 ng/mL or greater, including for White individuals and for Black individuals.
Methods: Single-center retrospective cohort study of 4638 individuals with a measured vitamin D level in the year before undergoing COVID-19 testing. The study was conducted at an academic medical center in Chicago, Illinois. Participants included individuals with data on vitamin D level within 365 days before COVID-19 testing.
> Main outcome: positive result for COVID-19 in PCR testing.
Findings:
> Lower vitamin D levels were more common in Black individuals (<20 ng/mL: 829 of 2288 Black individuals [36%]) than White individuals (<20 ng/mL: 315 of 1999 White individuals [16%]).
> The risk of having positive results in Black individuals was 2.64-fold greater with a vitamin D level of 30 to 39.9 ng/mL than a level of 40 ng/mL or greater and decreased by 5% per 1-ng/mL increase in level among individuals with a level of 30 ng/mL or greater.
> There were no statistically significant associations of vitamin D levels with COVID-19 positivity rates in White individuals.
> Randomized clinical trials to determine whether increasing vitamin D levels to greater than 30 to 40 ng/mL affect COVID-19 risk are warranted, especially in Black individuals. |
| BMI 18MAR2021 | Association between living with children and outcomes from covid-19: OpenSAFELY cohort study of 12 million adults in England | Forbes H., et al. UK gotopaper | Public Health / Epidemiology | To investigate whether risk of infection with SARS-CoV-2 and outcomes of covid-19 differed between adults living with and without children during the first two waves of the UK pandemic
> Population based cohort study: two cohorts of adults (≥18 yrs) registered at a general practice (1 Feb - 1 Sept 2020)
> Adjusted hazard ratios (HR) for SARS-CoV-2 infection, covid-19 related admission to hospital or intensive care, or death from covid-19, by presence of children in the household.
Findings:
> Among 9 334 392 adults aged ≤65 yrs, during wave 1, living with children was not associated with materially increased risks of recorded SARS-CoV-2 infection, covid-19 related hospital or intensive care admission, or death from covid-19.
> In wave 2, among adults aged ≤65 yrs, living with children of any age was associated with an increased risk of recorded SARS-CoV-2 infection (HR 1.06 (95% CI 1.05 to 1.08) for living with children aged 0-11 years; 1.26 (1.12 to 1.40) for living with children aged 12-18).
Living with children aged 0-11:
> was associated with reduced risk of death from both covid-19 and non-covid-19 causes in both waves; living with children of any age was also associated with lower risk of dying from non-covid-19 causes.
> For adults ≤65 yrs during wave 2, was associated with an increased absolute risk of having SARS-CoV-2 infection recorded of 40-60 per 10 000 people, from 810 to between 850 and 870, and an increase in hospital admissions of 1-5 per 10 000 people, from 160 to between 161 and 165.
Living with children aged 12-18 years was associated with an increase of 160-190 per 10 000 in the number of SARS-CoV-2 infections and an increase of 2-6 per 10 000 in the number of hospital admissions.
In contrast to wave 1, evidence existed of increased risk of reported SARS-CoV-2 infection and covid-19 outcomes among adults living with children during wave 2. However, this did not translate into a materially increased risk of covid-19 mortality, and absolute increases in risk were small. |
Using national PCR-test data from 2020 (4 million individuals (69% of the population) underwent 10·6 million tests), we estimated protection towards repeated infection with SARS-CoV-2.

Methods
- Analysis of infection rates during the second surge of the COVID-19 epidemic (Sept 1 - Dec 31, 2020), by comparing infection rates between individuals with positive and negative PCR tests during the first surge (March - May, 2020)
- Alternative cohort analysis, comparing infection rates throughout the year between those with and without a previous confirmed infection at least 3 months earlier, irrespective of date.

Findings
- During the first surge (before June, 2020), 533381 people were tested, of whom 11727 (2·20%) were PCR positive, and 525339 were eligible for follow-up in the second surge, of whom 11068 (2·11%) had tested positive during the first surge.
- Among eligible PCR-positive individuals from the first surge of the epidemic, 72 (0·65% [95% CI 0·51–0·82]) tested positive again during the second surge compared with 16819 (3·27% [3·22–3·32]) of 514271 who tested negative during the first surge.
- Protection against repeat infection was 80·5% (95% CI 75·4–84·5).
- In the alternative cohort analysis, among those aged ≥65, observed protection against repeated infection was 47·1% (95% CI 24·7–62·8).
- No difference in estimated protection against repeated infection by sex (male 78·4% [72·1–83·2] vs female 79·1% [73·9–83·3]) or evidence of waning protection over time (3–6 months of follow-up 79·3% [74·4–83·3] vs ≥7 months of follow-up 77·7% [70·9–82·9]).

These findings could inform decisions on groups to vaccinate and advocate for vaccination of previously infected individuals, as natural protection, especially among older people, cannot be relied on.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **JAMA** 17MAR2021 | Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19 | COMEBAC Study Group France | Public Health / Epidemiology - long Covid | **Aim:** to describe the consequences at 4 months in patients hospitalized for COVID-19.
Findings
> 478 were evaluated by telephone (mean age, 61 years [SD, 16 years]; 201 men, 277 women).
> 244 patients (51%) declared at least 1 symptom that did not exist before COVID-19: fatigue in 31%, cognitive symptoms in 21%, and new-onset dyspnea in 16%. There was further evaluation in 177 patients (37%), including 97 of 142 former ICU patients.
> The median 20-item Multidimensional Fatigue Inventory score (n = 130) was 4.5 (interquartile range IR, 3.0-5.0) for reduced motivation and 3.7 (IR, 3.0-4.5) for mental fatigue (possible range, 1 [best] to 5 [worst]).
> The median 36-item Short-Form Health Survey score (n = 145) was 25 (IR, 25.0-75.0) for the subscale “role limited owing to physical problems” (possible range, 0 [best] to 100 [worst]).
> Computed tomographic lung-scan abnormalities were found in 108 of 171 patients (63%), mainly subtle ground-glass opacities. Fibrotic lesions were observed in 33 of 171 patients (19%), involving less than 25% of parenchyma in all but 1 patient. Fibrotic lesions were observed in 19 of 49 survivors (39%) with acute respiratory distress syndrome.
> Among 94 former ICU patients, anxiety, depression, and posttraumatic symptoms were observed in 23%, 18%, and 7%, respectively.
> The left ventricular ejection fraction was less than 50% in 8 of 83 ICU patients (10%). New-onset chronic kidney disease was observed in 2 ICU patients.
> Serology was positive in 172 out of 177 outpatients (97%).
Four months after hospitalization for COVID-19, a cohort of patients frequently reported symptoms not previously present, and lung-scan abnormalities were common among those who were tested. |
| **Nature** 16MAR2021 | Clofazimine broadly inhibits coronaviruses including SARS-CoV-2 | Yuan S., et al. China | Therapeutics | Clofazimine is an anti-leprosy drug with a favourable safety profile
In vitro & in vivo studies
> We show that clofazimine possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 and MERS-CoV replication in multiple in vitro systems.
> The FDA-approved molecule was found to inhibit viral spike-mediated cell fusion and viral helicase activity.
> In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and faecal viral shedding, and also mitigated inflammation associated with viral infection
> Combinatorial application of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted upper respiratory tract viral shedding.
Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, and, possibly most importantly, emerging CoVs of the future. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEJM 16MAR2021</td>
<td>Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant</td>
<td>Madhi S.A., et al. International gotopaper</td>
<td>Vaccines - Variants</td>
<td>Efficacy of ChAdOx1 against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. Methods: > Multicenter, double-blind, randomized, controlled trial in HIV- infected South Africa. > Participants age: 18 to 65 years of age > Two doses of vaccine containing 5×10^{10} viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. > Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. Primary end points: safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. Findings: > 2026 HIV-negative adults enrolled (median age, 30 years); > 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. > Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. > In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], −49.9 to 59.8). > Among the 42 participants with Covid-19, 39 cases (92.9%) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, −76.8 to 54.8). > The incidence of serious adverse events was balanced between the vaccine and placebo groups. Conclusion: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant.</td>
</tr>
<tr>
<td>Cell Rep. 16MAR2021</td>
<td>Virological and immunological features of SARS-CoV-2-infected children who develop neutralizing antibodies</td>
<td>Cotugno N., et al. Italy gotopaper</td>
<td>Immunology</td>
<td>Aim: to define the humoral and cellular responses in SARS-CoV-2-infected children. Methods: Analysis of anti-SARS-CoV-2 antibodies and their neutralizing activity (PRNT) in 66 COVID-19-infected children at 7 (±2) days after symptom onset. Analysis of Ag-specific T and B cells defined as CD4+CD40L+ and SARS-CoV-2 Spike (S1+S2)-positive switched B cells. Findings: > Individuals with specific humoral responses presented faster virus clearance and lower viral load associated with a reduced in vitro infectivity. > The frequencies of SARS-CoV-2-specific CD4+CD40L+ T cells and Spike-specific B cells were associated with the anti-SARS-CoV-2 antibodies and the magnitude of neutralizing activity. > The plasma proteome confirmed the association between cellular and humoral SARS-CoV-2 immunity, and PRNT+ patients show higher viral signal transduction molecules (SLAMF1, CD244, CLEC4G). Cellular and humoral anti-SARS-CoV-2 responses in children, which may drive future vaccination trial end points and quarantine measures policies.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Clin Infect Dis.</td>
<td>Reinfection Rates among Patients who Previously Tested Positive for COVID-19: a Retrospective Cohort Study</td>
<td>Sheehan M.M., et al. USA</td>
<td>Public Health / Epidemiology</td>
<td>Methods > Retrospective cohort study of one multi-hospital health system included 150,325 patients tested for COVID-19 infection via PCR from March 12, 2020 to August 30, 2020 > Testing performed up to February 24, 2021 in these patients was included for analysis > Main outcome = reinfection (defined as infection ≥ 90 days after initial testing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gotopaper</td>
<td></td>
<td>Findings > Protection offered from prior infection was 81.8% (95% confidence interval 76.6 to 85.8), and against symptomatic infection was 84.5% (95% confidence interval 77.9 to 89.1) > Prior infection in patients with COVID-19 was highly protective against reinfection and symptomatic disease. > This protection increased over time, suggesting that viral shedding or ongoing immune response may persist beyond 90 days and may not represent true reinfection. > As vaccine supply is limited, patients with known history of COVID-19 could delay early vaccination to allow for the most vulnerable to access the vaccine and slow transmission. Patients with confirmed history of infection with SARS-CoV-2 are less likely to be retested or reinfected more than 90 days after their initial infection than those with initial negative tests. Protectiveness of prior infection against subsequent infection is high.</td>
</tr>
<tr>
<td>Nature 15MAR2021</td>
<td>Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7</td>
<td>Davies N.G., et al. UK</td>
<td>Variants</td>
<td>Aim: to determine if variant B.1.1.7 leads to changes in disease severity by analysing a dataset linking 2,245,263 positive SARS-CoV-2 community tests and 17,452 COVID-19 deaths in England (1 Sept 2020 - 14 Feb 2021). > For 1,146,534 (51%) of these tests, the presence or absence of B.1.1.7 can be identified because of mutations in this lineage preventing PCR amplification of the spike gene target (S gene target failure, SGTF). > Based on 4,945 deaths with known SGTF status, we estimate that the hazard of death associated with SGTF is 55% (95% CI 39–72%) higher after adjustment for age, sex, ethnicity, deprivation, care home residence, local authority of residence and test date. > These data correspond to the absolute risk of death for a 55–69-year-old male increasing from 0.6% to 0.9% (95% CI 0.8–1.0%) within 28 days after a positive test in the community. > Correcting for misclassification of SGTF and missingness in SGTF status, we estimate a 61% (42–82%) higher hazard of death associated with B.1.1.7. This analysis suggests that B.1.1.7 is not only more transmissible than preexisting SARS-CoV-2 variants, but may also cause more severe illness.</td>
</tr>
<tr>
<td>Nature Commun.</td>
<td>Evaluating the impact of curfews and other measures on SARS-CoV-2 transmission in French Guiana</td>
<td>Andronico A., et al. French Guiana</td>
<td>Public Health / Epidemiology</td>
<td>> Report and evaluate the control strategy implemented during a large SARS-CoV-2 epidemic in June–July 2020 in French Guiana that relied on curfews, targeted lockdowns, and other measures. > To describe how mathematical modelling was used during this crisis to support policy making and planning. Methods > Deterministic mathematical model to describe the transmission of SARS-CoV-2 and subsequent disease progression (applying age-specific probabilities to the demographic structure and expected contact patterns in French Guiana, …) Findings > The combination of these interventions coincided with a reduction in the basic reproduction number of SARS-CoV-2 from 1.7 to 1.1, which was sufficient to avoid hospital saturation. > We estimate that thanks to the young demographics, the risk of hospitalisation following infection was 0.3 times that of metropolitan France and that about 20% of the population was infected by July > Our model projections are consistent with a recent seroprevalence study. The study show-cases how mathematical modelling can be used to support healthcare planning in a context of high uncertainty.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Clin Infect Dis. 12MAR2021 | Household SARS-CoV-2 transmission and children: a network prospective study | Soriano-Arandes A., Spain [gotopaper](#) | Public Health / Epidemiology | **Aim:** describe the epidemiological and clinical characteristics of children with COVID-19 in Catalonia (Spain) and investigate the dynamics of household transmission. Prospective, observational, multicenter study performed during summer and school periods (1 July-31 October, 2020) on COVID-19 patients <16 years.
> The study included 1040 COVID-19 patients <16 years. 47.2% were asymptomatic, 10.8% had comorbidities, and 2.6% required hospitalization. No deaths were reported.
> Viral transmission was common among household members (62.3%).
> More than 70% (756/1040) of pediatric cases were secondary to an adult, whereas 7.7% (80/1040) were index cases.
> The Secondary Attack Rate (SAR) was significantly lower in households with COVID-19 pediatric index cases during the school period relative to summer ($p=0.02$), and when compared to adults ($p=0.006$).
> No individual or environmental risk factors associated with the SAR were identified.
> Children are unlikely to cause household COVID-19 clusters or be major drivers of the pandemic even if attending school. |
Methods
37 participants (median age 62 years; 35% female) measurement of neutralising antibody responses following first and second immunisations using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein.
Findings
> The GMT against wild type (WT) following the second dose of vaccine is substantially higher than after the first dose (318 vs 77). Correlation between total Spike IgG titres and serum neutralisation titres
> Broad range of T cell responses (IFN-Gamma). No correlation with serum neutralization titers
> Vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. Reduction also evident in sera from some convalescent patients.
> Decreased B.1.1.7 neutralisation also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the RBM (5 out of 31), but not in RBD neutralising mAbs binding outside the RBM.
> Introduction of the E484K mutation in a B.1.1.7 background to reflect a newly emergent Variant of Concern (VOC 202102/02) led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone.
Conclusion:
> Pseudovirus bearing S protein with the full set of mutations present in the B.1.1.7 variant result in small reduction in neutralisation by sera from BNT162B2 vaccinees (more marked following the first dose than the second dose). This could be related to increased breadth/potency/concentration of antibodies following the boost dose.
> E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods:
> Randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S (NCT04436276).
> Twenty-five participants; interim analysis at day 71. A single clinical site in Boston
> 1 or 2 intramuscular injections with 5×10^{10} viral particles or 1×10^{11} viral particles of Ad26.COV2.S vaccine or placebo (day 1 and day 57).
Main Outcomes and Measure: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses.
Findings:
> Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively.
> By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization.
> On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups.
> A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced.
Conclusion: Ad26.COV2.S induces rapid binding and neutralization antibody responses as well as cellular immune responses. |
| PNAS 09MAR2021 | A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike | Lu M., et al. USA gotopaper | Vaccines | Evaluation of a SARACoV2 Measles virus (rMeV) vaccine efficacy in cotton rat, IFNAR−/−/mice, IFNAR−/−/hCD46 mice, and golden Syrian hamsters
Recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD).
Findings:
> rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2–specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S),
> rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent.
> Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response.
> rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology.
Conclusion: rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMJ 10MAR2021</td>
<td>Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study</td>
<td>Challen R., et al. UK gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>To establish whether there is any change in mortality from infection with a new variant of SARS-CoV-2, designated a variant of concern (VOC-202012/1) in December 2020, compared with circulating SARS-CoV-2 variants. Methods > Matched cohort study (participants were matched on age, sex, ethnicity, index of multiple deprivation, lower tier local authority region, and sample date of positive specimens, and differed only by detectability of the spike protein gene using the TaqPath assay) > Community based (pillar 2) covid-19 testing centres in the UK using the TaqPath assay (a proxy measure of VOC-202012/1 infection) > 54,906 matched pairs of participants who tested positive for SARS-CoV-2 in pillar 2 between 1 October 2020 and 29 January 2021, followed-up until 12 February 2021 > Main outcome measure: Death within 28 days of the first positive SARS-CoV-2 test result. Findings > The mortality hazard ratio associated with infection with VOC-202012/1 compared with infection with previously circulating variants was 1.64 (95% confidence interval 1.32 to 2.04), corresponding to 64% increased risk of death, in patients who tested positive for covid-19 in the community. > In this comparatively low risk group, this represents an increase in deaths from 2.5 to 4.1 per 1000 detected cases. Increased risk of mortality is increased by infection with VOC-202012/01 is highly probable. If this finding applies to other populations, infection with VOC-202012/1 could cause substantial additional mortality compared with previously circulating variants. Healthcare capacity planning and national and international control policies are all impacted by this finding, which supports further coordinated and stringent measures to reduce deaths.</td>
</tr>
<tr>
<td>Nature Med. 10MAR2021</td>
<td>Attributes and predictors of long COVID</td>
<td>Sudre C.H., et al. UK gotopaper</td>
<td>Clinics - Long Covid</td>
<td>Analysis of prevalence, risk factors and early predictors of long COVID. > 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app. > 558 (13.3%) participants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks > Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex > Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76–4.50)). > A simple model to distinguish between short COVID and long COVID at 7 days is presented, which could be used to identify individuals at risk of long COVID.</td>
</tr>
<tr>
<td>Nature 09MAR2021</td>
<td>Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein</td>
<td>Tegally H., et al. South Africa gotopaper</td>
<td>Virology</td>
<td>B.1.351 lineage (VOC 501Y.V2): > Shows marked hypermutation: 6 non-synonymous mutations in the spike protein by to 15/10/20, then 3 more by 30/11/20, plus deletion of 3 amino acids > Mutations N501Y, E484K and K417N are at key residues of the RBD – the two latters are key for neutralizing antibody binding > E484 and N501 pattern of nucleotide variation suggest evolution under positive selection > B.1.351 most likely evolved by mutation on circulating intermediate mutants > B.1.351 likely emerged in Nelson Madela Bay in early August and became dominant in Easter Cape, Western Cape and KwaZulu-Natal Provinces within weeks > It has a selective advantage, from increased transmissibility and/or immune escape</td>
</tr>
</tbody>
</table>
Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial

Authors and link
Ella R., et al. India [gotopaper](#)

Field of expertise
Vaccines

Key facts
BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 μg or 6 μg) formulated with a toll-like receptor 7/8 agonist molecule (IMDG) adsorbed to alum (Algel).

Methods
- Double-blind, randomised, multicentre, phase 2 clinical trial NCT04471519 to evaluate the immunogenicity and safety of BBV152 in healthy adults and adolescents (aged 12–65 years) at nine hospitals in India.
- Phase 1 trial data allowed to chose phase II formulations of BBV152: 3 μg and 6 μg with Algel-IMDG administered on day 0 and day 28
- Participants with positive SARS-CoV-2 nucleic acid and serology tests were excluded.

Primary outcome: SARS-CoV-2 wild-type neutralising antibody titres and seroconversion rates at 4 weeks after the second dose

Secondary outcome: Cell-mediated responses (T-helper-1 profiling at 2 weeks after the second dose)

Safety: assessed in all participants who received at least one dose of the vaccine

Findings
- 380 participants enrolled and randomly assigned to the 3 μg with Algel-IMDG group (n=190) or 6 μg with Algel-IMDG group (n=190).
- GMTs; PRNT50 at day 56 were significantly higher in the 6 μg with Algel-IMDG group (197.0 [95% CI 155.6–249.4]) than the 3 μg with Algel-IMDG group (100.9 [74.1–137.4]; p=0.0041).
- Seroconversion based on PRNT50 at day 56 was reported in 171 (92.9% [95% CI 88.2–96.2]) of 184 participants in the 3 μg with Algel-IMDG group and 174 (98.3% [95.1–99.6]) of 177 participants in the 6 μg with Algel-IMDG group.
- GMTs (MNT50) at day 56 were reported in 162 (88.0% [95% CI 82.4–92.3]) of 184 participants in the 3 μg with Algel-IMDG group and 171 (96.6% [92.8–98.8]) of 177 participants in the 6 μg with Algel-IMDG group.
- The 3 μg with Algel-IMDG and 6 μg with Algel-IMDG formulations elicited T-cell responses that were biased to a Th1 phenotype at day 42.
- No significant difference in the proportion of participants who had a solicited local or systemic adverse reaction in the 3 μg with Algel-IMDG group (38 [20.0%; 95% CI 14.7–26.5] of 190) and the 6 μg with Algel-IMDG group (40 [21.1%; 15.5–27.5] of 190) was observed on days 0–7 and days 28–35; no serious adverse events were reported in the study.

Conclusion
BBV152 induced high neutralising antibody responses that remained elevated in all participants at 3 months after the second vaccination. The 6 μg with Algel-IMDG formulation has been selected for the phase 3 efficacy trial.

Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe

Authors and link
Damialis A., et al. Germany [gotopaper](#)

Field of expertise
Public Health / Epidemiology

Key facts
> Coexposure to airborne pollen enhances susceptibility to respiratory viral infections, regardless of the allergy status.
> We hypothesized this could be also true for SARS-CoV-2 infections.

Methods
- Test for relationships between SARS-CoV-2 infection rates and pollen concentrations, along with humidity, temperature, population density, and lockdown effects
- Our unique dataset derives from 130 sites in 31 countries and across five continents (8,019 data points)

Findings
- Pollen, some-times in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability
- Lockdown halved infection rates under similar pollen concentrations
- As we cannot completely avoid pollen exposure, we suggest wide dissemination of pollen–virus coexposure information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature 08MAR2021 | Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 | Wang P., et al. USA [gotopaper](#) | Virology | **Background:** Authorized therapeutic or preventive interventions against COVID are directed toward the initial SARS-CoV-2 that emerged in 2019. The recent emergence of new SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa is of concern because of their purported ease of transmission and extensive mutations in the spike protein.

Findings:
- Monoclonal antibodies: neutralizing activity of 12 RBD mAbs against authentic B.1.1.7 and B.1.351 viruses, as compared to the original SARS-CoV-2 strain (WT), in Vero E6 cells
 - Neutralization of B.1.1.7: only the activities of 910-3022 and S3095 are significantly impaired.
 - Neutralization of B.1.351: the activities of 910-30, 2-1520, LY-CoV555 (bamlanivimab)1,23, C12124, and REGN10933 (casirivimab)2,720,27, REGN10987 (imdevimab), C13524, and S309 retain their activities against B.1.351
 - Convalescent plasma from 20 patients more than one month after documented SARS-CoV-2 infection in the Spring of 2020
 - Most (16 of 20) plasma samples lost >2.5-fold neutralizing activity against B.1.351, while maintaining activity against B.1.1.7. Only plasma from 4 patients retain neutralizing activities similar to those against the WT
 - Vaccinee sera obtained from 12 participants of a Phase 1 clinical trial of Moderna SARS-CoV-2 mRNA-1273 Vaccine conducted at the NIH.
 - Each vaccinee serum sample was assayed for neutralization against B.1.1.7, B.1.351, and WT viruses. No loss of neutralizing activity against B.1.1.7, whereas every sample lost activity against B.1.351.

| Blood Advances 08MAR2021 | Heterogeneous NLRP3 inflammasome signature in circulating myeloid cells as a biomarker of COVID-19 severity | Courjon J., et al. France [gotopaper](#) | Immunology | The NLRP3 inflammasome can play a crucial role during innate immunity activation, but NLRP3 response during SARS-CoV-2 infection in patients is unknown.

Aim: Prospectively monitoring of caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19.

- The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients.
- CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood.
- In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control.
- NLRP3 inflammasome activation potential differs among myeloid cells. It could be used as a biomarker of COVID-19 patient evolution. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Nature Med. 04MAR2021** | Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies | Chen R.E., et al. USA gotopaper | Virology | Background: Impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, chimeric strains with South African or Brazilian spike genes and isogenic recombinant viral variants with designed mutations or deletions at positions 69-70, 417, 484, 501, 614 and/or 681 of the spike protein, using using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera and human sera from recipients of the BNT162b2 mRNA vaccine.

Findings:
> in vitro experiments using a B.1.1.7 isolate and engineered variants in the backbone of the WA1/2020 strain establish that mutations in the spike can impact the potency of antibody neutralization
> Some neutralizing mAbs targeting the base of the RBD or NTD showed reduced activity against the B.1.1.7 isolate, whereas others targeting the RBM or NTD failed to inhibit infection of Wash SA-B.1.351, Wash BR-B.1.1.248 or variants containing the E484K substitution as a vulnerability for multiple neutralizing mAbs
> Several other highly neutralizing mAbs (such as COV2-2196, COV2-2381, COV2-3025 and S2E12) showed intact or only mildly diminished inhibitory activity against the suite of variant viruses we tested, possibly because they bind the RBM at sites other than the E484K residue
> Cocktails of mAbs binding different epitopes of the spike protein overcame virus resistance to individual mAbs
> Studies with human sera from convalescent patients and recipients of the BNT162b2 mRNA vaccine and animal sera after immunization with a vaccine encoding a similar spike gene, demonstrate a lower potency of neutralization against E484K and N501Y-containing viruses
> Convalescent and vaccine-induced immune sera neutralized infection of the chimeric SARS-CoV-2 strains encoding the Brazilian spike (B.1.1.248) better than the South African spike (B.1.351) even though both viruses encoded E484 and N501 mutations

Conclusion: Adjustments to some therapeutic antibody cocktails or existing spike sequences in vaccines might be necessary, corroborating in vivo studies are needed. |
| **JAMA 04MAR2021** | Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19A Randomized Clinical Trial | Lopez-Medina E., et al. Colombia/USA gotopaper | Therapeutics | Aim: To determine whether ivermectin is an efficacious treatment for mild COVID-19.

Double-blind, randomized trial conducted at a single site in Cali, Colombia, on adult patients with mild disease and symptoms for 7 days or fewer (enrolment July 15-November 30, followed up through December 21, 2020)
Patients were randomized to receive ivermectin, 300 μg/kg of body weight per day for 5 days (n = 200) or placebo (n = 200).
Primary outcome: time to resolution of symptoms within a 21-day follow-up period.

Results:
> 398 patients randomized in primary analysis population (median age, 37yo; 58% women)
> Median time to resolution of symptoms was 10 days (IQR, 9-13) in the ivermectin group compared with 12 days (IQR, 9-13) in the placebo group [hazard ratio, 1.07 (95% CI, 0.87 to 1.32); P = .53 by log-rank test].
> By day 21, 82% in the ivermectin group and 79% in the placebo group had resolved symptoms.
> The most common solicited adverse event was headache in 104 patients (52%) given ivermectin and 111 (56%) who received placebo.
> The most common serious adverse event was multiorgan failure, occurring in 4 patients (2 in each group).

Conclusion: Among adults with mild COVID-19, a 5-day course of ivermectin, compared with placebo, did not significantly improve the time to resolution of symptoms |
Blood 03MAR2021

The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A

Wu S.C., et al. USA gotopaper

Virology

> The RBD of SARS-CoV-2 shares sequence similarity with an ancient lectin family known to bind blood group antigens

> Examined SARS-CoV-2 RBD binding with RBCs isolated from blood group A, B, or O individuals

Methods

> SARS-CoV receptor-binding domain (RBD) was cloned and purified

> SARS-CoV-2 RBD was incubated with HEK293T cells, HEK293 T cells expressing angiotensin-converting enzyme 2 (ACE2), or red blood cells (RBCs), followed by detection with anti-His antibody (Anti-His-Tag mAb-Alexa Fluor 647) and flow cytometric analysis

> Anti-A antibody was similarly used to detect the A antigen on blood group A RBCs

Findings

> SARS-CoV-2 RBD binds the blood group A expressed on respiratory epithelial cells, directly linking bloodgroup A and SARS-CoV-2

However, because these results do not definitively demonstrate that blood group A directly contributes to SARS-CoV-2 infection, future studies are needed, including an examination of the overall affinity and residues within the RBD responsible for blood group A interactions.

Whatever the possible contribution of ABO(H) antigens to infection and possible disease progression, the ability of the SARS-CoV-2 to directly interact with the blood group A antigen uniquely expressed on respiratory epithelial cells provides clear evidence of a direct association between SARS-CoV-2 and the ABO(H) genetic locus.

Lancet Respir Med. 04MAR2021

Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial

Lescure FX., et al. International gotopaper

Therapeutics

Aim: to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19.

60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo.

Primary endpoint: time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population.

Secondary endpoint: proportion of patients alive at day 29.

Findings

> 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]).

> At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12.0 days [95% CI 9.0 to 15.0]) and sarilumab 200 mg (10.0 days [9.0 to 12.0]; hazard ratio [HR] 1.03 [95% CI 0.75 to 1.40]; log-rank p=0.96) or sarilumab 400 mg (10.0 days [9.0 to 13.0]; HR 1.14 [95% CI 0.84 to 1.54]; log-rank p=0.34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference 17 [9%] of 173 patients in the sarilumab 400 mg group; difference 0.2 [−6.9 to 7.4]; p=0.85 vs placebo).

> At day 29, there were non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%); difference +8% [95% CI −7.7 to 25.5]; p=0.25) for patients who had critical disease.

> No unexpected safety signals were seen.

> The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group.

This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen.
Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial

Authors and link: PRINCIPLE Trial Collaborative Group
[UK gotopaper](https://www.thelancet.com)

Field of expertise: Therapeutics

Key facts

Aim: to assess the effectiveness of azithromycin to treat suspected COVID-19 among people in the community who had an increased risk of complications.

Open-label, multi-arm, adaptive platform randomised trial, we randomly assigned people aged 65 years and older, or 50 years and older with at least one comorbidity, who had been unwell for 14 days or less with suspected COVID-19.

Treatments: usual care plus azithromycin 500 mg daily for three days, usual care plus other interventions, or usual care alone.

Coprimary endpoints: within 28 days from randomisation: time to first self-reported recovery, and hospital admission or death related to COVID-19.

Findings

> 2120 participants were included in the Bayesian primary analysis, 500 participants in the azithromycin plus usual care group, 823 in the usual care alone group, and 797 in other intervention groups.

> 402/500 (80%) participants in the azithromycin plus usual care group and 631/823 (77%) in the usual care alone group reported feeling recovered within 28 days.

> We found little evidence of a meaningful benefit in the azithromycin plus usual care group in time to first reported recovery versus usual care alone (hazard ratio 1·08, 95% Bayesian credibility interval [BCI] 0·95 to 1·23), equating to an estimated benefit in median time to first recovery of 0·94 days (95% BCI −0·56 to 2·43).

> The probability that there was a clinically meaningful benefit of at least 1·5 days in time to recovery was 0·23. 16/500 (3%) participants in the azithromycin plus usual care group and 28/823 (3%) participants in the usual care alone group were hospitalised (absolute benefit in percentage 0·3%, 95% BCI −1·7 to 2·2).

> No deaths in either study group. Safety outcomes were similar in both groups.

These findings do not justify the routine use of azithromycin for reducing time to recovery or risk of hospitalisation for people with suspected COVID-19 in the community.

Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity Against SARS-CoV-2

Authors and link: Painter W. P., et al.
[USA gotopaper](https://www.azbestofmolecular.org)

Field of expertise: Therapeutics

Key facts

> Molnupiravir, EIDD-2801/MK-4482, prodrug of the active antiviral ribonucleoside analog 14ß-0-hydroxycytidine (NHC; EIDD-1931)

> Single and multiple doses of molnupiravir were evaluated in this first-in-human, phase 1, randomized, double-blind, placebo-controlled study in healthy volunteers, which included evaluation of the effect of food on pharmacokinetics.

Findings

> EIDD-1931 appeared rapidly in plasma, with a median time of maximum observed concentration of 1.00 to 1.75 hours, and declined with a geometric half-life of approximately 1 hour, with a slower elimination phase apparent following multiple doses or higher single doses (7.1 hours at 24sthe highest dose tested). Mean maximum observed concentration and area under the concentration versus time curve increased in a dose-proportional manner, and there was no accumulation following multiple doses. When administered in a fed state, there was a decrease in the rate of absorption, but no decrease in overall exposure.

> Molnupiravir was well tolerated. Fewer than half of subjects reported an adverse event, the incidence of adverse events was higher following administration of placebo, and 93.3% of adverse events were mild. One discontinued early due to rash. There were no serious adverse events and there were no clinically significant findings in clinical laboratory, vital signs, or electrocardiography.

> Plasma exposures exceeded expected efficacious doses based on scaling from animal models; therefore, dose escalations were discontinued before a maximum tolerated dose was reached.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> This variant has an estimated 43–90% (range of 95% CI 38–130%) higher reproduction number than pre-existing variants. Its relative growth rate has declined slightly over time but it remains among the highest of any lineage as a function of lineage age
> No increased or decreased severity of the disease associated to VOC 202012/01 was identified by the increased transmissibility model
> A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases
> VOC 202012/01 has spread globally and exhibits a similar transmission increase in Denmark (55%), Switzerland (74%), and the United States (59%).
Without stringent control measures, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. |
> Lineage B.1.35 1 is defined by nine changes in the spike protein relative to the Wuhan-1 D614G spike. These changes include N501Y, which confers enhanced affinity for ACE2 and clusters of substitutions in two immunodominant regions of spike, suggesting escape from neutralization.
> Class 1 antibodies are most frequently elicited in SARS-CoV-2 infection and include an antibody response to an epitope only accessible in the RBD ‘up’ conformation. Class 2 antibodies use more diverse VH-genes and bind to RBD ‘up’ and RBD ‘down’ conformations of spike.
> An analysis of 3 class 1 antibodies showed reduced binding capacities and neutralisation to 501Y.V2 pseudovirus. 3 class 2 antibodies failed to bind 501Y.V2 RBD and were unable to neutralize the 501Y.V2 pseudovirus as well.
> This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma
Conclusion:
The prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines. |
| JAMA 01MAR2021| Binding and Neutralization Antibody Titers After a Single Vaccine Dose in Health Care Workers Previously Infected With SARS-CoV-2 | Saadat S., et al. USA gotopaper | Therapeutics | Background:
> Persons who have had COVID-19 are thought to have protective immunity and memory responses for at least 6 months. However, neither recall responses nor ideal vaccine dosing regimens have been studied in those previously infected with SARS-CoV-2.
Methods:
> HCW cohort. stratified into 3 groups: SARS-CoV-2 IgG-antibody negative (Ab-negative); IgG-positive asymptomatic COVID-19 (asymptomatic); and IgG-positive with history of symptomatic COVID-19 (symptomatic)
> Participants were vaccinated with Pfizer-BioNTech or Moderna
Findings:
> 59 volunteers enrolled: 17 in the Ab-negative, 16 in the asymptomatic, and 26 in the symptomatic group
> At 0, 7, and 14 days, median reciprocal half-maximal binding titers were higher in each of the asymptomatic (208, 29 364, and 34 033) and symptomatic (302, 32 301, and 35 460) groups compared with the Ab-negative group (<50, <50, and 924) (P < .001 for each).
> At 0 and 14 days, median reciprocal ID99 virus neutralization titers of each of the asymptomatic (80 and 40 960) and symptomatic (320 and 40 960) groups were higher than the Ab-negative group (<20 and 80) (P < .001 for each)
Conclusions:
Health care workers with previous COVID-19 infection (laboratory-confirmed serology testing) had higher antibody titer responses to a single dose of mRNA vaccine than those not previously infected. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 26FEB2021 | Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19 | Gupta A., et al. USA | Therapeutics | Background: > Statins are known to have anti-inflammatory and antithrombotic properties but their benefit has not been assessed in COVID-19.
Methods: > Retrospective analysis of patients admitted with COVID-19 from February 1st through May 12th, 2020 with study period ending on June 11th, 2020. > Antecedent of statin use > Multivariable logistic regression model to predict the propensity of receiving statins, adjusting for baseline sociodemographic and clinical characteristics, and outpatient medications. > The primary endpoint includes in-hospital mortality within 30 days.
Findings: > 2626 patients enrolled, of whom 951 (36.2%) were antecedent statin users. > Among 1296 patients (648 statin users, 648 non-statin users) identified with 1:1 propensity-score matching, statin use is significantly associated with lower odds of the primary endpoint in the propensity-matched cohort (OR 0.47, 95% CI 0.36–0.62, p < 0.001).
Conclusion: Antecedent statin use in patients hospitalized with COVID-19 is associated with lower inpatient mortality. |
The S-614G variant: > has enhanced binding to human host cell surface receptor ACE2 > has increased replication in primary human bronchial and nasal airway epithelial cultures and in a human ACE2 knock-in mouse model > has markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection.
The S-614G substitution results in subtle increases in binding and replication in vitro, and it provides a real competitive advantage in vivo, particularly during the transmission bottleneck. |
| Clin Infect Dis. 24FEB2021 | Persistence of antibodies to SARS-CoV-2 in relation to symptoms in a nationwide prospective study | den Hartog G., et al. Netherlands | Immunology | Study change in Immunoglobulin (Ig) isotype seropositivity and IgG binding strength of SARS-CoV-2-specific serum antibodies up to 7 months following onset of symptoms in a nationwide sample
Methods > prospective representative serological study were included based on IgG seroconversion to the Spike S1 protein of SARS-CoV-2 (N=353) with up to three consecutive serum samples per seroconverted participant (N=738)
Findings > While SARS-CoV-2-specific IgM and IgA antibodies declined rapidly after the first month post onset of disease, specific IgG was still present in 92% (95% confidence interval, CI, 89-95) of the participants after 7 months. > The estimated 2-fold decrease of IgG antibodies was 158 days (95% CI 136-189). > Concentrations sustained better in persons reporting significant symptoms compared to asymptomatic persons or those with mild upper respiratory complaints only. > Similarly, avidity of IgG antibodies for symptomatic persons showed a steeper increase over time compared with persons with mild or no symptoms (p=0.022).
IgG antibodies sustain in 92% of the participants after 7 months post onset of symptoms whereas IgM and IgA antibodies wane. Concentrations are higher in symptomatic persons and avidity increases with time.
SARS-CoV-2-specific IgG antibodies persist and show increasing avidity over time, indicative of underlying immune maturation. These data support development of immune memory against SARS-CoV-2 providing insight into protection of the general unvaccinated part of the population. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Methods: Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states.
Findings:
> Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19.
> Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4%; adjusted risk ratios [aRR], 1.51 vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8%; aRR, 1.43 vs White).
> Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L), and lower platelet count (<150 x103 cells/μL [212/523 (41%) vs 84/486 (17%)]).
> A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization.
> Among patients with MIS-C with reduced left ventricular systolic function (34.2%) and coronary artery aneurysm (13.4%), an estimated 91.0% and 79.1%, respectively, normalized within 30 days. |
| JAMA Intern Med. 24FEB2021 | Association of SARS-CoV-2 Seropositive Antibody Test With Risk of Future Infection | Harvey R.A., et al. UK gotopaper | Diagnostics | **Aim:** to evaluate evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among patients with positive vs negative test results for antibodies in an observational descriptive cohort study of clinical laboratory and linked claims data.
Methods: The study created cohorts from a deidentified data set composed of commercial laboratory tests, medical and pharmacy claims, electronic health records, and hospital chargemaster data. The cohort included 3 257 478 unique patients.
Findings: From 3 257 478 unique patients with an index antibody test; 56% were female with a median (SD) age of 48 (20) years. Of these, 2 876 773 (88.3%) had a negative index antibody result, and 378 606 (11.6%) had a positive index antibody result.
> Patients with a negative antibody test result were older than those with a positive result (mean age 48 vs 44 years).
> Of index-positive patients, 18.4% converted to seronegative over the follow-up period.
> During the follow-up periods, the ratio of positive NAAT results among individuals who had a positive antibody test at index vs those with a negative antibody test at index was 2.85 at 0 to 30 days, 0.67 at 31 to 60 days, 0.29 at 61 to 90 days, and 0.10 at more than 90 days.
Patients with positive antibody test results were initially more likely to have positive NAAT results, consistent with prolonged RNA shedding, but became markedly less likely to have positive NAAT results over time, suggesting that seropositivity is associated with protection from infection. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEJM 24FEB2021</td>
<td>BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting</td>
<td>Dagan N., et al. Israel gotopaper</td>
<td>Vaccines</td>
<td>Evaluation of the effectiveness of the BNT162b2 mRNA vaccine based on data from Israel’s largest health care organization. Findings > Each study group (vaccinated and control) included 596,618 persons. > Estimated vaccine effectiveness for the study outcomes at days 14-20 after the first dose and at ≥7 days after the second dose was as follows: - for documented infection, 46% (95% confidence interval [CI], 40 to 51) and 92% (95% CI, 88 to 95); - for symptomatic Covid-19, 57% (95% CI, 50 to 63) and 94% (95% CI, 87 to 98); - for hospitalization, 74% (95% CI, 56 to 86) and 87% (95% CI, 55 to 100); - for severe disease, 62% (95% CI, 39 to 80) and 92% (95% CI, 75 to 100). > Estimated effectiveness in preventing death from Covid-19 was 72% (95% CI, 19 to 100) for days 14-20 after the first dose. > Estimated effectiveness in specific subpopulations assessed for documented infection and symptomatic Covid-19 was consistent across age groups, with potentially slightly lower effectiveness in persons with multiple coexisting conditions. BNT162b2 mRNA vaccine is effective for a wide range of Covid-19-related outcomes, a finding consistent with that of the randomized trial.</td>
</tr>
<tr>
<td>Clin Infect Dis. 24FEB2021</td>
<td>Persistence of antibodies to SARS-CoV-2 in relation to symptoms in a nationwide prospective study</td>
<td>den Hartog G., et al. Netherlands gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>Aim: to study changes in Immunoglobulin (Ig) isotype seropositivity and IgG binding strength of SARS-CoV-2-specific serum antibodies up to 7 months following onset of symptoms in a nationwide sample. Methods: prospective representative serological study in the Netherlands were included based on IgG seroconversion to the Spike S1 protein of SARS-CoV-2 (N=353), with up to three consecutive serum samples per seroconverted participant (N=738). IgM, IgA and IgG antibody concentrations to S1, and increase in IgG were determined. Findings: > While SARS-CoV-2-specific IgM and IgA Abs declined rapidly after the first month post onset of disease, specific IgG was still present in 92% of the participants after 7 months. > The estimated 2-fold decrease of IgG antibodies was 158 days. > Concentrations sustained better in persons reporting significant symptoms compared to asymptomatic persons or those with mild upper respiratory complaints only. > SARS-CoV-2-specific IgG antibodies persist and show increasing avidity over time, indicative of underlying immune maturation.</td>
</tr>
<tr>
<td>Cell 23FEB2021</td>
<td>Extremely potent human monoclonal antibodies from COVID-19 convalescent patients</td>
<td>Andreano E., et al. Italy gotopaper</td>
<td>Therapeutics</td>
<td>> 453 neutralizing antibodies were identified by single cell sorting 4,277 SARS-CoV-2 spike protein specific memory B cells from 14 COVID-19 survivors. > The most potent neutralizing antibodies recognized the spike protein receptor binding domain, followed in potency by antibodies recognizing the S1 domain, the spike protein trimer and the S2 subunit. > Only 1.4% of the antibodies neutralized the authentic virus with a potency of 1-10 ng/mL. > The most potent monoclonal antibody, engineered to reduce the risk of antibody dependent enhancement and prolong half-life, neutralized the authentic wild type virus and emerging variants containing D614G, E484K and N501Y substitutions. > Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc-functions.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Cell 23FEB2021** | No higher infectivity but immune escape of SARS-CoV-2 501Y.V2 variants | Li Q., et al. China [gotopaper](#) | Variants | > Experiments with 18 pseudotyped viruses showed that the 501Y.V2 variants do not confer increased infectivity in multiple cell types except for murine ACE2-overexpressing cells, where a substantial increase in infectivity was observed.
> The susceptibility of the 501Y.V2 variants to 12 of 17 neutralizing monoclonal antibodies was substantially diminished.
> Neutralization ability of the sera from convalescent patients and immunized mice was also reduced for these variants.
> The neutralization resistance was mainly caused by E484K and N501Y mutations in the receptor-binding domain of Spike.
> The enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of spillover of the 501Y.V2 variants to mice.
> The neutralization resistance detected for the 501Y.V2 variants suggests the potential for compromised efficacy of monoclonal antibodies and vaccines. |
Methods: Neutralization of a B.1.351 viral isolate and compare it to 127 neutralization of Victoria, an early Wuhan related isolate. Neutralization assays were performed on a large panel of monoclonal Abs convalescent sera from early in the pandemic, sera from patients suffering from B.1.1.7 and finally from 130 recipients of the Oxford-AstraZenca and Pfizer-BioNTech vaccines.
Findings: >The receptor binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal Ab neutralization largely driven by E484K although K417N and N501Y act together against some important antibody classes.
> In a number of cases it would appear that convalescent and some vaccine serum offers limited protection against this variant.
> Neutralization of B.1.351 by sera from naturally infected or vaccinated individuals is significantly reduced, leading in some cases to a complete inability to neutralize B.1.351 virus. |
| **Lancet Infect Dis. 23FEB2021** | Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19: a multicentre cohort study | Gutiérrez-Gutiérrez B., et al. Spain [gotopaper](#) | Clinics | Aim: to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment.
Methods: data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid. The authors developed a simplified probabilistic model for phenotype assignment, including 16 variables.
Findings: >Three distinct phenotypes were derived in the derivation cohort:
A: Younger patients with, less frequently male, had mild viral symptoms, and had normal inflammatory parameters (516 [19%] patients).
B: patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters (1955 [73%]).
C: older patients with more comorbidities and even higher inflammatory parameters than phenotype B (116 [8%]).
> 30-day mortality rates were 2·5% for A patients, 30·5% for B patients and 60·7% for C patients.
> The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5·3% for phen A, 31·3% for phen B, and 59·5% for phen C; external validation cohort: 3·7% for phen A, 23·7% for phen B, and 51·4% for phenotype C). |
Journal and date: Lancet 19FEB2021

Title: Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials

Authors and link: Voysey M., et al. UK [gotopaper](#)

Field of expertise: Vaccines

Key facts

- Prespecified pooled analysis of trials of ChAdOx1 nCoV-19 (Single blinded: one phase 1/2, UK; one phase 2/3, UK; one phase 3, Brazil. Double-blinded: one phase 1/2, South Africa)
- Exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses.
- Immunogenicity and protection afforded by the first dose, before a booster dose has been offered.

FINDINGS

> 24 422 participants across the four studies (Apr 23–Dec 6, 2020), 17 178 included in the primary analysis (8597 receiving ChAdOx1 nCoV-19, 8581 receiving control vaccine). 332 NAAT-positive infections met the primary endpoint of symptomatic infection >14 days after the second dose.

> Overall vaccine efficacy >14 days after the second dose was 66·7% (95% CI 57·4–74·0), with 84/8597 (1·0%) cases in the ChAdOx1 nCoV-19 group and 248/8581 (2·9%) in the control group.

> There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group.

> 108/12 282 (0·9%) participants in the ChAdOx1 nCoV-19 group and 127/11 962 (1·1%) in the control group had serious adverse events. There were 7 deaths considered unrelated to vaccination (2 in the ChAdOx1 nCoV-19 group and 5 in the control group), including one COVID-19-related death in one participant in the control group.

> Exploratory analyses showed that vaccine efficacy after a single standard dose from day 22 to day 90 after vaccination was 76·0% (59·3–85·9). Modelling analysis indicated that protection did not wane during this initial 3-month period.

> Antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59–0·74]).

> In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3–91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0–69·9] at <6 weeks).

> Immunogenicity: binding antibody responses >2-fold higher after an interval of ≥12 or more weeks compared with an interval of <6 weeks in those who were aged 18–55 years (GMR 2·32 [2·01–2·68]).

The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval. A 3-month dose interval might have advantages over a programme with a short dose interval.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods: retrospective cohort of 9109 vaccine-eligible HCWs, comparing vaccinated versus unvaccinated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings: > there were 170 SARS-CoV-2 infections among HCWs in the period between Dec 19, 2020, and Jan 24, 2021, of which 99 (58%) HCWs reported symptoms. Of the 170 HCWs who became infected, 89 (52%) were unvaccinated, 78 (46%) tested positive after the first dose, and 3 (2%) tested positive after the second dose. >Among the 125 infections that could be traced, 87 (70%) were community acquired and there were no nosocomial clusters. >Compared with a SARS-CoV-2 infection rate of 7·4 per 10 000 person-days in unvaccinated HCWs, infection rates were 5·5 per 10 000 person-days and 3·0 per 10 000 person-days on days 1–14 and 15–28 after the first dose of the vaccine, respectively. >Adjusted rate reductions of SARS-CoV-2 infections were 30% (95% CI 2–50) and 75% (72–84) for days 1–14 and days 15–28 after the first dose, respectively >Data show substantial early reductions in SARS-CoV-2 infection and symptomatic COVID-19 rates following first vaccine dose administration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods: Cases reported were screened for laboratory and clinical findings of potential reinfection followed by requests for medical records and laboratory specimens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings: > Among 73 potential reinfection patients with available records, 30 patients had recurrent COVID-19 symptoms explained by alternative diagnoses with concurrent SARS-CoV-2 positive RT-PCR. >24 patients remained asymptomatic after recovery but had recurrent or persistent RT-PCR. >19 patients had recurrent COVID-19 symptoms with concurrent SARS-CoV-2 positive RT-PCR but no alternative diagnoses. These 19 patients had symptom recurrence a median of 57 days after initial symptom onset. >Six of these patients had paired specimens available for further testing, but none had laboratory findings confirming reinfections. >No confirmation of SARS-CoV-2 reinfection within 90 days of the initial infection based on the clinical and laboratory characteristics of cases in this investigation.</td>
</tr>
<tr>
<td>Cell 18FEB2021</td>
<td>Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera</td>
<td>Supasa P., et al. UK gotopaper</td>
<td>Variants</td>
<td>Analysis of the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination, by mapping the impact of N501Y by structure/function analysis of a large panel of well-characterised monoclonal antibodies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light chain contacts with residue 501. >Original strain convalescent and vaccine sera show reduced B.1.1.7 neutralization >N501Y enhances RBD: ACE2 binding affinity 7-fold >N501Y compromises neutralisation by many antibodies with public V-region IGHV3-53 >Widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Nature Commun. 18FEB2021 | Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections | Bénard A., et al. Germany gotopaper | Clinics | Aim: To identify IL-3 as an independent prognostic marker for the outcome during SARS-CoV-2 infections
Methods: prospective multicentric study. In total, 105 (32 non-severe; 32 severe; 41 recovered) patients positive for SARS-CoV-2 PCR from oral swabs, oral fluid, or BALF were enrolled. Blood samples were collected at the onset of symptoms (≤24 h), and 1, 2, 3, 4, 5, 6, or 7 days later; or after recovery from SARS-CoV-2 infection (time of recovery = 16 days ± 2 days).
- A mouse model of pulmonary HSV-1 infection was used to characterize the IL-3 mechanism
Findings: >Patients with severe COVID-19 exhibit reduced circulating plasmacytoid dendritic cells (pDCs) and low plasma IFNα and IFNα levels when compared to non-severe COVID-19 patients.
> In a mouse model of pulmonary HSV-1 infection, treatment with recombinant IL-3 reduces viral load and mortality. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating pDCs into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells.
> Low plasma IL-3 levels are associated with increased severity, viral load, and mortality during SARS-CoV-2 infections.
IL-3 might be a predictive disease marker for SARS-CoV-2 infections and recombinant IL-3, or CD123 receptor agonists, may therefore have the potential as novel therapeutic agents in SARS-CoV-2 infected patients. |
> All the 20 serum samples neutralized USA-WA1/2020 (pseudovirus wild-type) and all mutant viruses at titers of 1:40 or greater.
> As compared with neutralization of USA-WA1/2020, neutralization of Δ242-244+D614G virus was similar and neutralization of the B.1.351-spike virus was weaker by approximately two thirds.
> Results suggest that virus with mutant residues in the receptor-binding site (K417N, E484K, and N501Y) is more poorly neutralized than virus with Δ242-244, located in the N-terminal domain of the spike protein.
It is unclear what effect a reduction in neutralization would have on BNT162b2-elicited protection from Covid-19 caused by the B.1.351 lineage. |
| NEJM 17FEB2021 | Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine — Preliminary Report | Wu K., et al. USA gotopaper | Vaccines - variants | Pseudoviruses bearing the Wuhan-Hu-1 strain, the D614G substitution, the B.1.1.7 and B.1.351 variants and others were tested against sera from mRNA-1273-vaccinated individuals.
> Both the full panel of mutations in S and a subset of mutations affecting the receptor-binding domain (RBD) region of the B.1.1.7 variant had no significant effect on neutralization.
> A decrease in titers of neutralizing antibodies against the B.1.351 variant and a subset of its mutations affecting the RBD was observed.
> In serum samples obtained 1 week after the participants received the second dose of vaccine, we detected reductions by a factor of 2.7 in titers of neutralizing antibodies against the partial panel of mutations and by a factor of 6.4 against the full panel of mutations.
> Levels of neutralization against the other tested variants that were similar to those against the Wuhan-Hu-1 (D614) isolate.
Protection against the B.1.351 variant conferred by the mRNA-1273 vaccine remains to be determined. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 18FEB2021 | Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults | Libster R., et al. Argentina [gotopaper](https://doi.org/10.1056/NEJMc2110057) | Therapeutics | Randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against SARS-CoV-2 in older adult patients within 72 hours after the onset of mild Covid-19 symptoms.
Primary end point: severe respiratory disease, defined as a respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both. The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably.
Findings
> A total of 160 patients underwent randomization
> In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P=0.03), with a relative risk reduction of 48%.
> A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81).
> No solicited adverse events were observed.
Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. |
Randomized trial on hospitalized adult patients with severe Covid-19 pneumonia in a 2:1 ratio to receive convalescent plasma or placebo.
Primary outcome: the patient’s clinical status 30 days after the intervention, as measured on a six-point ordinal scale ranging from total recovery to death.
Findings
> A total of 228 patients were assigned to receive convalescent plasma and 105 to receive placebo. Median time from the onset of symptoms to enrollment in the trial was 8 days, hypoxemia was the most frequent severity criterion for enrollment.
> The infused convalescent plasma had a median titer of 1:3200 of total SARS-CoV-2 antibodies (interquartile range, 1:800 to 1:3200). No patients were lost to follow-up.
> At day 30 day, no significant difference was noted between the convalescent plasma group and the placebo group in the distribution of clinical outcomes according to the ordinal scale (odds ratio, 0.83; 95% confidence interval [CI], 0.52 to 1.35; P=0.46).
> Overall mortality was 10.96% in the convalescent plasma group and 11.43% in the placebo group, for a risk difference of −0.46 percentage points (95% CI, −7.8 to 6.8).
> Total SARS-CoV-2 antibody titers tended to be higher in the convalescent plasma group at day 2 after the intervention.
> Adverse events and serious adverse events were similar in the two groups.
No significant differences were observed in clinical status or overall mortality between patients treated with convalescent plasma and those who received placebo. |
Modelling safe protocols for reopening schools during the COVID-19 pandemic in France

Authors: Di Domenico L., et al.

Field of expertise: Public Health / Epidemiology

Aim: To explore scenarios of partial, progressive, or full school reopening, through a stochastic age-structured transmission model.

- Under a scenario with stable epidemic activity if schools were closed, reopening pre-schools and primary schools would lead to up to 76% [67, 84]% occupation of ICU beds if no other school level reopened, or if middle and high schools reopened later.
- Immediately reopening all school levels may overwhelm the ICU system. Priority should be given to pre- and primary schools allowing younger children to resume learning and development. Full attendance in middle and high schools is not recommended for stable or increasing epidemic activity.
- Large-scale test and trace is required for epidemic control.

Patient factors and temporal trends associated with COVID-19 in-hospital mortality in England: an observational study using administrative data

Authors: Annakan N., et al.

Field of expertise: Public Health / Epidemiology

Findings:
- 91 541 adult patients with COVID-19 were discharged during the study period, among which 28 200 (30.8%) in-hospital deaths occurred.
- Significant predictors of in-hospital death included older age, male sex, Charlson comorbidity index items, and deprivation (Index of Multiple Deprivation).
- Young age was not an independent factor associated with severe SARS-CoV-2 infection, and children <90 days old accounted for 4 (3%) had severe disease.
- Children <90 days old accounted for the lowest percentage of hospital mortality, lower respiratory tract infection or multisystem inflammatory syndrome (paucisymptomatic SARS-CoV-2 infection, with several clinical patterns (paucisymptomatic children, admitted for surveillance, lower respiratory tract infection or multisystem inflammatory syndrome).
- Conclusion: The reasons for the observed improvements in mortality should be thoroughly investigated to inform the response to future outbreaks. The higher mortality rate reported for certain ethnic minority groups in community-based studies compared with our hospital-based analysis might partly reflect differential infection rates in those at greatest risk, propensity to become severely ill once infected, and health-seeking behaviours.

Factors Associated With Severe SARS-CoV-2 Infection

Authors: Ouldali N., et al.

Field of expertise: Clinics

Aim: To analyze the clinical spectrum of hospitalized pediatric SARS-CoV-2 infection and predictors of severe disease evolution.

- 379 hospitalized children with SARS-CoV-2 infection, with several clinical patterns (paucisymptomatic children, admitted for surveillance, lower respiratory tract infection or multisystem inflammatory syndrome).
- Children <90 days old accounted for 37% of cases (145 of 397), but only 4 (3%) had severe disease.
- Excluding children with multisystem inflammatory syndrome in children (n = 29) and hospitalized for a diagnosis not related to SARS-CoV-2 (n = 62), 23 of 306 (11%) children had severe disease, including 6 deaths.
- Factors independently associated with severity were age ≥10 years (odds ratio [OR] = 3.4), hypoxemia (OR = 8.9), C-reactive protein level ≥80 mg/L (OR = 6.6).

Young age was not an independent factor associated with severe SARS-CoV-2 infection, and children <90 days old were at the lowest risk of severe disease evolution.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Med. 12FEB2021 | Humoral signatures of protective and pathological SARS-CoV-2 infection in children | Bartsch Y.C., et al. USA gotopaper | Immunology | Aim: identifying immune mechanisms that result in disparate clinical phenotypes in children (largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C)).
> Using systems serology, in 25 children with acute mild COVID-19 we observed a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease.
> Weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults.
> These data provide insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity in children infected with SARS-CoV-2 |
| Cell 12FEB2021 | Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection | Winkler ES., et al. USA gotopaper | Immunology | Aim: to define correlates of protection neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals.
> Neutralizing mAbs require monocytes and CD8+ T cells for maximal clinical and virological benefit. In hamsters, Fc effector functions of a neutralizing mAb are required to prevent weight loss, control viral infection, and limit inflammation.
> Fc effector functions of neutralizing antibodies are necessary for optimal therapeutic outcome after SARS-CoV-2 infection |
| BMJ 11FEB2021 | Early initiation of prophylactic anticoagulation for prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: cohort study | Rentsch CT., et al. UK/USA gotopaper | Therapeutics | Aim: To evaluate whether early initiation of prophylactic anticoagulation compared with no anticoagulation was associated with decreased risk of death among COVID-19 patients admitted to hospital in USA.
> Methods: Observational cohort study including 4297 patients admitted to hospital from 1 March to 31 July 2020
> Main outcome: 30 day mortality
> Secondary outcomes: inpatient mortality, initiating therapeutic anticoagulation (a proxy for clinical deterioration, including thromboembolic events), and bleeding that required transfusion.
> Findings:
> Early initiation of prophylactic anticoagulation was not associated with increased risk of bleeding that required transfusion. Early initiation of prophylactic anticoagulation compared with no anticoagulation among COVID-19 patients admitted to hospital was associated with a decreased risk of 30 day mortality |

Findings:
- Fc effector functions are dispensable when neutralizing mAbs are administered as prophylaxis, but are required for optimal protection when given as post-exposure therapy.
- When administered after SARS-CoV-2 infection, intact but not LALA-PG mAbs reduce viral burden and lung disease. Fc engagement by Abs decreases immune cell activation and levels of inflammatory cytokines.
- Neutralizing mAbs require monocytes and CD8+ T cells for maximal clinical and virological benefit. In hamsters, Fc effector functions of a neutralizing mAb are required to prevent weight loss, control viral infection, and limit inflammation.
- Fc effector functions of neutralizing antibodies are necessary for optimal therapeutic outcome after SARS-CoV-2 infection.

Methods:
- A K18-hACE2 transgenic mouse model of SARS-CoV-2 infection and a Fc region genetic variant form of IgG (LALA-73 PG) of a potent RBD-binding neutralizing mAb that cannot engage FcγRs or complement were used to define the role of Fc effector functions in antibody protection.

Findings:
- Early initiation of prophylactic anticoagulation compared with no anticoagulation was associated with decreased risk of death among COVID-19 patients admitted to hospital in USA.
- The cumulative incidence of mortality at 30 days was 14.3% among those who received prophylactic anticoagulation.
- Compared with patients who did not receive prophylactic anticoagulation, those who did had a 27% decreased risk for 30 day mortality (hazard ratio 0.73).
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Euro Surveill, 11FEB2021 | Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: real-world evidence from healthcare workers, Israel, December 2020 to January 2021 | Jabal KA., et al. Israel gotopaper | Vaccine | Description of one dose immunogenicity of BNT162b2 vaccine in various age and ethnic groups
Background:
> As at 25 January 2021, Israel had vaccinated 29.2% of its population with a single dose of vaccine (almost exclusively BNT162b2 mRNA from Pfizer/BioNTech)
> Ziv Medical Center (ZMC), located in Safed, Israel, is a 350-bed hospital, staffed by a multi-ethnic workforce of ca 1,500 persons including Jews, Arabs and Druze among others. ZMC has offered the BNT162b2 mRNA-based vaccine to all its staff, including administrative and support staff, with no specific exclusion for pregnant women. As at 21 January 2021, one-dose uptake was ca 90%.
Findings:
> 519 participants to the study (19-77 years of age). IgGs levels measured at 21d
> 475 (92%) had detectable anti-SARS-CoV-2 IgG. Among these, GMC was 68.6 AU/mL (95% CI: 64–73.6). No differences between ethnicity or sex. Titres decreasing with age.
> 39 non-respondant: median age older than respondent (57 vs 45) and more likely to be Jewish (31/38 non-responders of known ethnicity, 82% vs 291/459 responders of known ethnicity; 63%)
> IgGs level postvaccination were higher among those with previous evidence of infection (at least one order of magnitude regardless the titre before vaccination) (GMC 573 vs 61.5)
Conclusion:
> age and ethnicity (but not sex) may be associated with the likelihood of non-response (findings based on 39 observations). |
| PNAS 09FEB2021 | Exhaled aerosol increases with COVID-19 infection, age, and obesity | Edwards D., et al. USA gotopaper | Public Health / Epidemiology | > Respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subject
Method
> Observational cohort study of the exhaled breath particles of 194 healthy human subjects
> Experimental infection study of 8 nonhuman primates infected, by aerosol, with SARS-CoV-2
Findings
> Exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years
> 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution
> The capacity of airway lining mucus to resist breakup on breathing varies significantly between individuals with a trend to increasing with the advance of COVID-19 infection and body mass index multiplied by age (i.e., BMI-years)
Conclusion
> Our studies of exhaled aerosol suggest that a critical factor in these and other transmission events is the propensity of certain individuals to exhale large numbers of small respiratory droplets.
> Understanding the source and variance of respiratory droplet generation, and controlling it via the stabilization of airway lining mucus surfaces, may lead to effective approaches to reducing COVID-19 infection and transmission
> These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature 10FEB2021</td>
<td>mRNA vaccine-elicted antibodies to SARS-CoV-2 and circulating variants</td>
<td>Wang Z., et al. USA gotopaper</td>
<td>Vaccines</td>
<td>Antibody and memory B cell responses in volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:
20 volunteer cohort
Eight weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-S and anti-RBD
Plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection
Vaccine-elicted monoclonal antibodies potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes in common with mAbs isolated from infected donors
However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations.
Activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin.
The same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs.
Conclusion: This results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.</td>
</tr>
<tr>
<td>Nature 09FEB2021</td>
<td>Lasting antibody and T cell responses to SARS-CoV-2 in COVID-19 patients three months after infection</td>
<td>Jiang X.L., et al. China gotopaper</td>
<td>Immunology</td>
<td>Aim : Longitudinal assessment of 25 SARS-CoV-2-infected patients up to 3–4 months post-infection and analysis of the specific antibody and memory T cell responses over time.
Findings:
All patients seroconvert for IgG against N, S, or RBD, as well as IgM against RBD, and produce neutralising antibodies (NAb) by 14 days post symptoms onset (PSO) with the peak levels attained by 15–30 days PSO.
Anti-SARS-CoV-2 IgG and NAb remain detectable and relatively stable 3–4 months PSO, whereas IgM antibody rapidly decay.
65% of patients have detectable SARS-CoV-2-specific CD4+ or CD8+ T cell responses 3–4 months PSO
T cell responses maintain in most recovered patients for at least 3–4 months after infection.
Assessment of the duration and resiliency of the SARS-CoV-2 antibody and T cell responses in a large cohort study would be desirable for validation of the results.</td>
</tr>
<tr>
<td>Nature 08FEB2021</td>
<td>Rapid decline of neutralizing antibodies against SARS-CoV-2 among infected healthcare workers</td>
<td>Marot S., et al. France gotopaper</td>
<td>Immunology</td>
<td>Persistence of neutralizing antibodies (NAb) among SARS-CoV-2-infected healthcare workers (HCW). Follow up of 26 HCW with mild COVID-19 three weeks (D21), two months (M2) and three months (M3) after the onset of symptoms.
Findings:
All the HCW had anti-receptor binding domain (RBD) IgA at D21, decreasing to 38.5% at M3 (p < 0.0001).
Concomitantly a significant decrease in NAb titers was observed between D21 and M2 (p > 0.03) and between D21 and M3 (p < 0.0001).
SARS-CoV-2 can elicit a NAb response correlated with anti-RBD antibody levels, however neutralizing activity declines, and may even be lost, in association with a decrease in systemic IgA antibody levels, from two months after disease onset.
Conclusions
This short-lasting humoral protection supports strong recommendations to maintain infection prevention and control measures in HCW, and suggests that periodic boosts of SARS-CoV-2 vaccination may be required.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
> 327 children enrolled (mean age 1.9 years), 197 daycare centre staff (40 yrs), and 164 adults in the comparator group (42 yrs).
> Positive serological tests were observed for 14 children (raw seroprevalence 4.3%) and 14 daycare centre staff (7.7%). After accounting for imperfect sensitivity and specificity of the assay, we estimated that 3.7% of the children and 6.8% of daycare centre staff had SARS-CoV-2 infection.
> The comparator group fared similarly to the daycare centre staff; 9 participants had a positive serological test (raw seroprevalence 5.5%), leading to a seroprevalence of 5.0% after adjusting.
> An exploratory analysis suggested that seropositive children were more likely than seronegative children to have been exposed to an adult household member with laboratory-confirmed COVID-19 (6/14 [43%] vs 19/307 [6%], relative risk 7.1).
The proportion of young children in this sample with SARS-CoV-2 infection was low. Intrafamily transmission seemed more plausible than transmission within daycare centres. |
| Nature Med. 08FEB2021 | Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera | Xie X., et al. USA gotopaper | Immunology | Methods
> Engineered three SARS-CoV-2 containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants
- Mutant N501Y virus contains the N501Y mutation that is shared by both the UK and SA variants
- Mutant Δ69/70 + N501Y +D614G virus contains two additional changes present in the UK variants: amino acid 69 and 70 deletion (Δ69/70) and D614G substitution (D614G mutation is dominant in circulating strains around the world)
- Mutant E484K + N501Y +D614G virus addition-ally contains the E484K substitution, which is also located in the viral RBD
> Neutralization assays with the same 20 sera samples
Findings
> All sera showed equivalent neutralization titers between the WT and mutant viruses, with differences of four-fold or less
> Notably, 10 out of the 20 sera had neutralization titers against mutant Δ69/70 + N501Y + D614G virus that were twice their titers against the WT virus, whereas 6 out of the 20 sera had neutralization titers against mutant E484K + N501Y + D614G virus that were half their titers against the WT virus
> The ratios of the neutralization GMTs of the sera against the N501Y, Δ69/70 + N501Y + D614G and E484K + N501Y + D614G viruses to their GMTs against the USA-WA1/2020 virus were 1.46, 1.41 and 0.81, respectively.
> Neutralization geometric mean titers (GMTs) of 20 BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BTN162b2 doses
> Clinical data are needed for firm conclusions about vaccine effectiveness against variant viruses. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> 353 participants with a positive anti-SARS-CoV-2 IgG test were identified, among whom 13 were sampled between November 2019 and January 2020.
> Evidence was confirmed by neutralizing antibodies testing.
> Investigations in 11 of these participants revealed evidence of symptoms possibly related to a SARS-CoV-2 infection or situations at risk of potential SARS-CoV-2 exposure.
These results suggest early circulation of SARS-CoV-2 in Europe. |
> Little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days.
> Following convalescent plasma therapy, large, dynamic virus population shifts were observed, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein.
> As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma.
> In vitro, the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type, possibly compensating for the reduced infectivity of D796H.
These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with evidence of reduced susceptibility to neutralising antibodies. |
Single-arm trial (NCT04275414) including 26 patients with severe Covid-19 followed up for 28 days, from 2-centers (China and Italy). Patients received a single dose of bevacizumab
Findings:
>PaO2/FiO2 values markedly increased at days 1 and 7 after bevacizumab administration compared to the baseline values.
>24 of 26 patients (92%) showed improvement and 2 patients (8%) showed no change in oxygen-support within 28-day follow-up, 17 (65%) patients are discharged, and none show worsen oxygen-support status nor die
>Significant reduction of lesion areas/ratios are shown in chest computed tomography (CT) or X-ray within 7 days.
>Of 14 patients with fever, body temperature normalizes within 72 h in 13 (93%) patients.
>Relative to comparable controls, bevacizumab shows clinical efficacy by improving oxygenation and shortening oxygen-support duration. Bevacizumab plus standard care is highly beneficial for patients with severe Covid-19. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
Double-blind, placebo-controlled trial, on 60 outpatients with laboratory-confirmed COVID-19 receiving PGL (single subcutaneous injection, 180 μg) or placebo within 7 days of symptoms onset or first positive swab.
Primary endpoint: proportion of patients who were negative for SARS-CoV-2 RNA on day 7 after the injection.
> The **decline in SARS-CoV-2 RNA was greater** in patients treated with PGL than placebo from day 3 onwards, with a difference of 2·42 log copies per mL at day 7 (p=0·0041).
> By day 7, 24 (80%) participants in the PGL group had an **undetectable viral load**, compared with 19 (63%) in the placebo group (p=0·15).
> After controlling for baseline viral load, patients in the PGL group were more likely to have **undetectable virus by day 7** than were those in the placebo group (odds ratio [OR] 4·12).
> Of those with baseline viral load above 106 copies per mL, 15/19 (79%) in the PGL group had undetectable virus on day 7, compared with 6/16 (38%) in the placebo group (OR 6·25).
> PGL was **well tolerated**, and adverse events were similar between groups (mild and transient aminotransferase, concentration increases more frequently observed in the PGL group).
Peginterferon lambda accelerated viral decline in outpatients with COVID-19, increasing the proportion of patients with viral clearance by day 7, particularly in those with high baseline viral load.

| Lancet Public Health 05FEB2021 | **COVID-19 vaccine hesitancy in a representative working-age population in France: a survey experiment based on vaccine characteristics** | Schwarzinger M., et al. France [gotopaper](#) | Public Health / Epidemiology | **Aim**: to assess the effects of vaccine characteristics, information on herd immunity, and general practitioner recommendation on vaccine hesitancy in a representative working-age population in France.
Online survey in July 2020, adults aged 18–64 years residing in France, with no history of SARS-CoV-2 infection. Responses were analysed with a two-part model to disentangle outright vaccine refusal from vaccine hesitancy.
Findings:
Survey responses were collected from 1942 working-age adults, of whom 560 (28·8%) opted for no vaccination (outright vaccine refusal) and 1382 (71·2%) did not.
> Outright vaccine refusal and vaccine hesitancy were both significantly associated with female gender, age, lower educational level, poor compliance with recommended vaccinations in the past, and no report of specified chronic conditions.
> Outright vaccine refusal was associated with a lower perceived severity of COVID-19.
> Vaccine hesitancy was lower when herd immunity benefits were communicated and in working versus non-working individuals, and those with experience of COVID-19 (Symptoms or close contact).
> For a mass vaccination campaign involving mass vaccination centres and communication of herd immunity benefits, the model predicted outright vaccine refusal in 29·4% of the French working-age population.
> Predicted hesitancy was highest for vaccines manufactured in China (vaccine acceptance 27·4%), and lowest for a vaccine manufactured in the EU (vaccine acceptance 61·3%).

<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancet 05FEB2021</td>
<td>Factors associated with the spatial heterogeneity of the first wave of COVID-19 in France: a nationwide geo-epidemiological study</td>
<td>Gaudart J., et al. France gotopaper</td>
<td>Public Health / Epidemiology</td>
<td>> better understand the factors associated with the heterogeneity of in-hospital COVID-19 morbidity and mortality across France</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Geo-epidemiological analysis was based on data publicly available for the 96 administrative departments of metropolitan France between March 19 and May 11, 2020, Assessment:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Multidimensional variables (spatiotemporal spread of the epidemic, national lockdown, demographic population structure, baseline intensive care capacities, ...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> in-hospital COVID-19 incidence, mortality, and case fatality rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> clear spatial heterogeneity of in-hospital COVID-19 incidence and mortality rates, following the spread of the epidemic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Delay between the first COVID-19-associated death and the onset of the national lockdown was positively associated with in-hospital incidence, mortality, and case fatality rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Mortality and case fatality rates were higher in departments with older populations (adjusted standardised ratio for populations with a high proportion older than aged >85 years 2.17 [95% CI 1.20–3.90] for mortality and 1.43 [1.08–1.88] for case fatality rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Mortality rate was also associated with incidence rate (1.0004, 1.0002–1.0001), but mortality and case fatality rates did not appear to be associated with baseline intensive care capacities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> No association between climate and in-hospital COVID-19 incidence, or between economic indicators and in-hospital COVID-19 incidence or mortality rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This ecological study highlights the impact of the epidemic spread, national lockdown, and reactive adaptation of intensive care capacities on the spatial distribution of COVID-19 morbidity and mortality</td>
</tr>
<tr>
<td>Lancet Infect Dis. 03FEB2021</td>
<td>Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial</td>
<td>Wu Z., et al. China gotopaper</td>
<td>Vaccines</td>
<td>> better understand the factors associated with the heterogeneity of in-hospital COVID-19 morbidity and mortality across France</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Randomised, double-blind, placebo-controlled, phase 1/2 clinical trial of CoronaVac in healthy adults aged 60 years and older (NCT04383574).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Vaccine or placebo by IM injection (in two doses, days 0 and 28).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Phase 1: dose-escalation study. 72 participants (24 per intervention group and 24 in the placebo group; mean age 65-8 years [SD 4-9])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Block 1: 3 μg inactivated virus in 0.5 mL of aluminium hydroxide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Block 2 (6 μg per injection).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Phase 2: 1.5 μg, 3 μg, or 6 μg per dose, or placebo. 350 participants were enrolled in phase 2 (100 in each intervention group and 50 in the placebo group; mean age 66.6 years [SD 4.7] in 349 participants)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary safety endpoint: adverse reactions within 28 days after each injection in all participants who received at least one dose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary immunogenicity endpoint: serumoconversion rate at 28 days after the second injection (NCT04383574).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Findings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Safety: any adverse reaction within 28 days after injection occurred in 20 (20%) of 100 participants in the 1.5 μg group, 25 (20%) of 125 in the 3 μg group, 27 (22%) of 123 in the 6 μg group, and 15 (21%) of 73 in the placebo group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> All adverse reactions were mild or moderate in severity and injection site pain (39 [9%] of 421 participants) was the most frequently reported event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Eight serious adverse events, considered unrelated to vaccination, have been reported by seven (2%) participants.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> In phase 1, seroconversion after the second dose was observed in 24 of 24 participants (100.0% [95% CI 85.8–100.0]) in the 3 μg group and 22 of 23 (95.7% [78.1–99.9]) in the 6 μg group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> In phase 2, seroconversion was seen in 88 of 97 participants in the 1.5 μg group (90.7% [83.1–95.7]), 96 of 98 in the 3 μg group (98.0% [92.8–99.8]), and 97 of 98 (99.0% [94.5–100.0]) in the 6 μg group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conclusion: CoronaVac is safe and well tolerated in older adults. Neutralising antibody titres by the 3 μg dose were similar to those of the 6 μg dose, and higher than those of the 1.5 μg dose.</td>
</tr>
</tbody>
</table>
PNAS 03FEB2021

Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort

Néant N., et al. France gotopaper

Public Health / Epidemiology

Aim: to characterize SARS-CoV-2 viral kinetics in hospitalized patients and its association with mortality in 655 hospitalized patients from the prospective French COVID cohort.

> The model predicted a median peak viral load that coincided with symptom onset.
> Patients with age ≥65y had a smaller loss rate of infected cells, leading to a delayed median time to viral clearance occurring 16d after symptom onset as compared to 13 d in younger patients.
> In multivariate analysis, the risk factors associated with mortality were age ≥65y, male gender, and presence of chronic pulmonary disease (hazard ratio [HR] > 2.0). Using a joint model, viral dynamics after hospital admission was an independent predictor of mortality (HR = 1.31, P < 10−3).

> Simulation of effectiveness of pharmacological interventions: a treatment able to reduce viral production by 90% upon hospital admission would shorten the time to viral clearance by 2.0 and 2.9d in patients of age <65 y and ≥65y, respectively. Assuming a similar association between viral dynamics and mortality in patients of age ≥65y with risk factors, this could translate into a reduction of mortality from 19 to 14%.

Viral dynamics is associated with mortality in hospitalized patients.

The Lancet 02FEB2021

Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia

Logunov D.Y., et al. Russia gotopaper

Vaccines

Background
> Sputnik V: heterologous recombinant adenovirus (rAd)-based vaccine.
> Good safety profile and strong humoral and cellular immune responses (phase 1/2 clinical trials). Preliminary results on the efficacy and safety of this vaccine from the interim analysis of this phase 3 trial. (NCT04530396).

Methods
> Randomised, double-blind, placebo-controlled, phase 3 trial (25 hospitals and polyclinics in Moscow, Russia).
> Participants aged at least 18 years, with negative SARS-CoV-2 PCR and IgG and IgM tests, no infectious diseases in the 14 days before enrolment, and no other vaccinations in the 30 days before enrolment.
> Randomly assigned (3:1) to receive vaccine or placebo (0·5 mL/dose) IM; prime-boost regimen at 21-day interval
> First dose (rAd26) and the second dose (rAd5), both vectors carrying the gene for the full-length SARS-CoV-2 glycoprotein S.

Primary outcome: proportion of participants with PCR-confirmed COVID-19 from day 21 after receiving the first dose.

SAE: assessed in all participants who had received at least one dose at the time of database lock

Findings
> 21 977 adults randomly assigned to the vaccine group (n=16 501) or the placebo group (n=5476).
> 19 866 received two doses of vaccine or placebo and were included in the primary outcome analysis.
> From 21 days after the first dose of vaccine (the day of dose 2): 16 (0·1%) of 14 964 participants in the vaccine group and 62 (1·3%) of 4902 in the placebo group were confirmed to have COVID-19: vaccine efficacy was 91·6% (95% CI 85·6–95·2).
> Most reported AEs were grade 1 (7485 [94·0%] of 7966 total events).
> SAE: 45 (0·3%) of 16 427 participants in the vaccine group and 23 (0·4%) of 5435 participants in the placebo group. None were considered associated with vaccination, with confirmation from the independent data monitoring committee.
> Four deaths were reported during the study (three [<0·1%] of 16 427 participants in the vaccine group and one [<0·1%] of 5435 participants in the placebo group), none of which were considered related to the vaccine.

Conclusion:
This interim analysis of the phase 3 trial of Gam-COVID-Vac showed 91·6% efficacy against COVID-19 and was well tolerated in a large cohort.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Science 02FEB2021 | Age groups that sustain resurging COVID-19 epidemics in the United States | Monod M., et al. UK [gotopaper](#) | Public Health / Epidemiology | > Understanding the age demographics driving transmission and how these affect the loosening of interventions is crucial
Methods
> Analyze aggregated, age-specific mobility trends from more than 10 million individuals in the US and link these mechanistically to age-specific COVID-19 mortality data
Findings
> Estimation: as of October 2020, individuals aged 20-49 are the only age groups sustaining resurgent SARS-CoV-2 transmission with reproduction numbers well above one, and that at least 65 of 100 COVID-19 infections originate from individuals aged 20-49 in the US
Targeting interventions – including transmission-blocking vaccines – to adults aged 20-49 is an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths. |
| Cell 02FEB2021 | Maturation and persistence of the anti-SARS-CoV-2 memory B cell response | Sokal A., et al. France [gotopaper](#) | Immunology | Analysis of the longevity and functionality of the anti-SARS-CoV-2 memory B cell response
Methods
> longitudinal deep profiling of the anti-SARS-CoV-2 memory B cell response in two parallel cohorts of patients with severe and mild COVID-19 (39 total patients)
> They combined single cell transcriptomics, single cell culture and IgH VDJ sequencing to track and characterize the cellular and molecular phenotype and clonal evolution of spike-specific MBCs clones from early time points after SARS-CoV-2 infection up to 6 months after the initial symptoms
Findings
> Distinct SARS-CoV-2 spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response
> While highly mutated memory B cells, including pre-existing cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late remarkably stable memory B-cell pool.
 => Seasonal coronavirus-specific memory B cells contribute an early anti-SARS-CoV2 response
 => Spike-specific memory B cells with a resting phenotype increase up to 6 months
> Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time
> Longitudinal study reveals a temporal switch to RBD-specific neutralizing memory B cells
These findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection. |
Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

Aim: to evaluate the safety and efficacy of azithromycin (500 mg once per day by mouth or intravenously for 10 days or until discharge) in patients admitted to hospital with COVID-19.
Primary outcome: 28-day all-cause mortality

Results
> Between April 7 and Nov 27, 2020, 7763 were included in the assessment of azithromycin. Mean age was 65·3 years, approx. a third were women. 2582 patients were randomly allocated to receive azithromycin and 5181 to usual care alone.
> Overall, 561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days (rate ratio 0·97).
> No significant difference was seen in duration of hospital stay (median 10 days vs 11 days) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 1·04).
> Among those not on invasive mechanical ventilation at baseline, no significant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (risk ratio 0·95).

In patients admitted to hospital with COVID-19, **azithromycin did not improve survival or other prespecified clinical outcomes.**

Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study

Aim: to analyse data from linked index cases of COVID-19 and their contacts to explore factors associated with transmission of SARS-CoV-2.
> We identified 314 patients with COVID-19, with 282 (90%) having at least one contact (753 contacts in total), resulting in 282 clusters.
> 90 (32%) of 282 clusters had at least one transmission event. The secondary attack rate was 17% (125/753 contacts), with a variation from 12% when the index case had a viral load lower than 1×10^6 copies per mL to 24% when the index case had a viral load of 1×10^10 copies per mL or higher (adjusted odds ratio per log10 increase in viral load 1·3).
> Increased risk of transmission was also associated with household contact (3·0) and age of the contact (per year: 1·02, 1·01–1·04).
> Of 421 contacts who were asymptomatic at the first visit, 181 (43%) developed symptomatic COVID-19, with a variation from approx. 38% in contacts with an initial viral load lower than 1×10^7 copies per mL to >66% for those with an initial viral load of 1×10^10 copies per mL or higher (hazard ratio per log10 increase in viral load 1·12).
> Time to onset of symptomatic disease decreased from a median of 7 days (IQR 5–10) for individuals with an initial viral load lower than 1×10^7 copies per mL to 6 days (4–8) for those with an initial viral load between 1×10^7 and 1×10^9 copies per mL, and 5 days (3–8) for those with an initial viral load higher than 1×10^9 copies per mL.

The viral load of index cases was a leading driver of SARS-CoV-2 transmission. The risk of symptomatic COVID-19 was strongly associated with the viral load of contacts at baseline and shortened the incubation time of COVID-19 in a dose-dependent manner.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature 01FEB2021</td>
<td>Immunogenic BNT162b vaccines protect rhesus macaques from SARS-CoV-2</td>
<td>Vogel A.B., et al. Germany gotopaper</td>
<td>Immunology / Preclinical model</td>
<td>Preclinical development of two BNT162b vaccine candidates: lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens > BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon) > BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (PS2) > flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity > Approximately 20% of the P25 trimers are in the two-RBD ‘down,’ one-RBD ‘up’ state Findings > In mice, one intramuscular dose of either candidate elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong TH1 CD4+ and IFNγ+ CD8+ T-cell responses > Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralising geometric mean titres 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel > Vaccine candidates protect macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement</td>
</tr>
<tr>
<td>Blood 01FEB2021</td>
<td>Dynamic angiopoietin-2 assessment predicts survival and chronic course in hospitalized patients with COVID-19</td>
<td>Villa E., et al. Italy gotopaper</td>
<td>Clinics</td>
<td>Aim: to examine the association between dynamic angiopoietin-2 assessment and COVID-19 short- and long-term clinical course. > Hospitalized patients with laboratory-confirmed COVID-19 from 2 Italian tertiary referral centres (derivation cohort, n = 187 patients; validation cohort, n = 62 patients). > Three-day angiopoietin-2 increase of at least twofold from baseline was significantly associated with in-hospital mortality by multivariate analysis (hazard ratio [HR], 6.69) with Area under the receiver operating characteristic curve (AUROC) = 0.845. > Ten-day angiopoietin-2 of at least twofold from baseline was instead significantly associated with nonresolving pulmonary condition by multivariate analysis (HR, 5.33) with AUROC = 0.969. > Patients with persistent elevation of 10-day angiopoietin-2 levels showed severe reticular interstitial thickening and fibrous changes on follow-up computed tomography scans. Angiopoietin-2 and Tie2 were diffusely colocalized in small-vessel endothelia and alveolar new vessels and macrophages. Findings: > Dynamic angiopoietin-2 course is strongly associated with COVID-19 in-hospital mortality and nonresolving pulmonary condition, and may be an early and useful predictor of COVID-19 clinical course. Description of disease phenotypes of SARS-CoV-2 exposure occurring around the time of vaccine administration - Disease phenotypes of a one-dose regimen given 3 days prior (D-3), 1 (D1) or 2 (D2) days after, or on the day (D0) of virus challenge in golden Syrian hamster - Monitoring of serial clinical severity, tissue histopathology, virus burden, and antibody response of the vaccinated hamsters. Findings: > One-dose vaccinated hamsters had significantly lower clinical disease severity score, body weight loss, lung histology score, nucleocapsid protein expression in lung, infectious virus titres in the lung and nasal turbinate, inflammatory changes in intestines and a higher serum neutralizing antibody or IgG titre against the spike receptor-binding domain or nucleocapsid protein when compared to unvaccinated controls. > Improvements particularly noticeable in D-3, but also in D0, D1 and even D2 vaccinated hamsters to varying degrees. > No increased eosinophilic infiltration was found in the nasal turbinate, lung, and intestine after virus challenge. > Significantly higher serum titre of fluorescent foci microneutralization inhibition antibody was detected in D1 and D2 vaccinated hamsters at day 4 post-challenge compared to controls despite undetectable neutralizing antibody titre. > Vaccination just before or soon after exposure to SARS-CoV-2 does not worsen disease phenotypes and may even ameliorate infection.</td>
</tr>
<tr>
<td>Clin Infect Dis 30JAN21</td>
<td>Absence of vaccine-enhanced disease with unexpected positive protection against SARS-CoV-2 by inactivated vaccine given within three days of virus challenge in Syrian hamster model</td>
<td>Li C., et al. China gotopaper</td>
<td>Vaccines (viral mutants)</td>
<td>- Disease phenotypes of a one-dose regimen given 3 days prior (D-3), 1 (D1) or 2 (D2) days after, or on the day (D0) of virus challenge in golden Syrian hamster - Monitoring of serial clinical severity, tissue histopathology, virus burden, and antibody response of the vaccinated hamsters. Findings: > One-dose vaccinated hamsters had significantly lower clinical disease severity score, body weight loss, lung histology score, nucleocapsid protein expression in lung, infectious virus titres in the lung and nasal turbinate, inflammatory changes in intestines and a higher serum neutralizing antibody or IgG titre against the spike receptor-binding domain or nucleocapsid protein when compared to unvaccinated controls. > Improvements particularly noticeable in D-3, but also in D0, D1 and even D2 vaccinated hamsters to varying degrees. > No increased eosinophilic infiltration was found in the nasal turbinate, lung, and intestine after virus challenge. > Significantly higher serum titre of fluorescent foci microneutralization inhibition antibody was detected in D1 and D2 vaccinated hamsters at day 4 post-challenge compared to controls despite undetectable neutralizing antibody titre. > Vaccination just before or soon after exposure to SARS-CoV-2 does not worsen disease phenotypes and may even ameliorate infection.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Science 29JAN2021 | Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human seras | Muik M., et al. Germany/USA | Vaccines (viral mutants) | **Background:**
> The new SARS-CoV-2 lineage called B.1.1.7 emerged in the UK and is reported to spread more efficiently and faster than other strains.
> This variant contains 10 amino acid changes in the spike protein: ΔH69/V70, ΔY144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H.
> N501Y mutation is located in the receptor binding site. The spike with this mutation binds more tightly to its cellular receptor ACE-2.
Is this virus strain recognized by neutralizing antibodies induced after vaccination?

Methods:
> VSV SARS-CoV-2-S pseudoviruses bearing the Wuhan reference strain or the B.1.1.7 lineage spike protein tested with sera of 40 participants given the BNT162b2 vaccine from Pfizer (phase I/II, DE).
> The 50% neutralization geometric mean titer (GMT) of sera against the SARS-CoV-2 lineage B.1.1.7 spike-pseudotyped VSV for the younger adult group and the full analysis set were slightly, statistically significantly reduced compared to the GMTs against the Wuhan reference spike-pseudotyped VSV.
> GMTs were not significantly different for the older adult group (0.78 [0.68;0.89] for the younger and 0.83 [0.65;1.1] for the older adults (0.80 [0.71;0.89] CI 95%).

Conclusions:
> Based on experience from antibody correlates of disease protection for influenza virus vaccines, a 20% reduced titer does not indicate a biologically significant change in neutralization activity.
> The largely preserved neutralization of pseudoviruses bearing the B.1.1.7 spike by BNT162b2-immune sera makes it unlikely that the UK variant virus will escape BNT162b2-mediated protection.

> Maternal and cord blood sera were available for Ab measurement for 1471 mother/newborn dyads (09Apr-08Aug 2020).
> IgG and IgM to the receptor-binding domain of the SARS-CoV-2 spike protein were measured by enzyme-linked immunosorbent assay.
> Ab concentrations and placental transfer ratios were analyzed in combination with demographic and clinical data.

Methods:
> Maternal and cord blood sera were available for Ab measurement for 1471 mother/newborn dyads (09Apr-08Aug 2020).
> IgG and IgM to the receptor-binding domain of the SARS-CoV-2 spike protein were measured by enzyme-linked immunosorbent assay.
> Ab concentrations and placental transfer ratios were analyzed in combination with demographic and clinical data.

Findings:
> SARS-CoV-2 IgG Ab were transferred across the placenta in 72 of 83 pregnant women who were seropositive.
> Cord blood IgG concentrations were directly associated with maternal Ab concentrations.
> IgM antibodies were not detected in any cord blood sera.
> Transfer ratios were associated with time elapsed from maternal infection to delivery and not associated with severity of maternal infection.

Efficient transplacental transfer of SARS-CoV-2 IgG Ab supports potential maternal Ab neonate protection from SARS-CoV-2 infection.

| Cell 28JAN2021 | Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity | Thomson E.C., et al. UK/USA | Virology | **Key facts:**
> The immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S, and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K.
> N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes to wild-type.
> The N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the FDA, and reduces the activity of some polyclonal sera from persons recovered from infection.

Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| Nature Commun. 27JAN2021 | Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients | Lassau N., et al. France gotopaper | Diagnostics | Identifying predictors of disease severity is a priority
> Collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals.
> Train a deep learning model based on CT scans to predict severity
> Construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model

Findings
Neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables.
When comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach. |

Methods
> Prospective cohort study at an academic hospital
> Patients ≥18 years old (or their caregivers) hospitalized with SARS-CoV-2 infection (March 1-June 29, 2020)
> Confirmed via RT-PCR testing, bronchial swab, serological testing, or suggestive computed tomography results

To describe proportion of patients with:
> Diffusing lung capacity for carbon monoxide (DLCO) <80% of expected value
> Severe lung function impairment (DLCO <60% expected value)
> Posttraumatic stress symptoms (measured using the Impact of Event Scale–Revised total score)
> Functional impairment (assessed using the Short Physical Performance Battery [SPPB] score and 2-minute walking test);
> Identification of factors associated with DLCO reduction and psychological or functional sequelae

Findings
> 238/767 patients (31.0%) (median age, 61 [50-71] years; 142 [59.7%] men; median comorbidities, 2 [1-3]) had sequelae.
> 219 patients were able to complete both pulmonary function tests and DLCO measurement. DLCO was reduced to <80% of the estimated value in 113 patients (51.6%) and <60% in 34 patients (15.5%)
> The SPPB score was suggested limited mobility (score <11) in 53 patients (22.3%).
Patients with normal SPPB scores underwent a 2-minute walk test, which was outside reference ranges of expected performance for age and sex in 75 patients (40.5%) → 128 patients (53.8%) had functional impairment. Posttraumatic stress symptoms were reported in a total of 41 patients (17.2%)

4 months after discharge, respiratory, physical, and psychological sequelae were common among patients who had been hospitalized for COVID-19. |
| Cell 26JAN2021 | Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 Infection | Brouwer P.J.M., et al. The Netherlands gotopaper | Vaccines | > Two-component protein nanoparticles display multiple copies of the SARS-CoV-2 Spike protein potentially protecting from infection

Immunization studies:
> Vaccination induces potent neutralizing antibody responses in mice, rabbits and cynomolgus macaques
> Spike protein nanoparticles enhance cognate B cell activation in vitro
> Vaccination protects macaques against a high-dose SARS-CoV-2 challenge, resulting in strongly reduced viral infection and replication in upper and lower airways.

These nanoparticles are a promising vaccine candidate. |
Global absence and targeting of protective immune states in severe COVID-19

Combes A.J., et al. USA

Immunology

Methods: whole-blood preserving single-cell analysis to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum.

Findings:
> Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease
> Severe COVID-19 patients paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease eve two weeks beyond symptom onset.
> Examination of the serum from severe patients demonstrates that they uniquely produce Abs that functionally block the production of the mild disease-associated ISG-expressing cells, by engaging conserved signaling circuits that dampen cellular responses to interferons

Global targeting of ISG archetypes might be addressable with drugs such as rituximab to reduce B cell responses, perhaps in the presence of convalescent serum, through introduction of IVIG to compete with serum antibodies for FcR engagement, or with rapid development of antibodies that clinically block FCγRIIB.

Prospective mapping of viral mutations that escape antibodies used to treat COVID-19

Starr T.N., et al. USA

Immunology

Aim: mapping how all mutations to SARS-CoV-2’s receptor-binding domain (RBD) affect binding by the antibodies in the REGN-COV2 cocktail and the antibody LY-CoV016.

Methods: To validate the antigenic effects of key mutations, neutralization assays using spike-pseudotyped lentiviral particles were made.

Findings:
> Regarding REGN-COV2 antibodies: a mutation at site 486 escaped neutralization only by REGN10933, whereas mutations at sites 439 and 444 escaped neutralization only by REGN10987
> One mutation (E406W) strongly escapes the cocktail of both antibodies
> E406W is not accessible by a single-nucleotide change, which may explain why it was not identified by the Regeneron cocktail
> Mutations at RBD residues that contact antibody do not always mediate escape, and several prominent escape mutations occur at residues not in contact with antibody.
> The maps reveal that mutations escaping the individual antibodies are already present in circulating SARS-CoV-2 strains.

Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A

Therapeutics

Previous author’s work on SARS-CoV-2 highlighted 332 host proteins that are likely to play a role in the viral life cycle of SARS-CoV-2. Drugs modulating these host proteins were tested and those that targeted the eukaryotic translation machinery (eIF4H interacts with SARS-CoV-2 Nsp9) demonstrated particularly potent antiviral activities.

In this study, the eEF1A inhibitor plitidepsin was tested. Plitidepsin has been clinically developed for the treatment of multiple myeloma with a well-established safety profile and pharmacokinetics.

Findings:
> Antiviral activity (IC90 = 0.88 nM) 27.5-fold more potent than remdesivir against SARS-CoV-2 in vitro, limiting toxicity
> The dynamics between the antiviral effects of plitidepsin and remdesivir when used together in vitro suggests that plitidepsin has an additive effect with remdesivir
> The antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A.
> in vivo studies in mouse models of SARS-CoV-2 infection showed a reduction of viral replication in the lungs by two orders of magnitude when using Plitidepsin in prophylactic treatment.

Conclusions:
This study establishes plitidepsin as a host-targeted anti-SARS-CoV-2 agent with in vivo efficacy. Phase II/III study to come.
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int J Infect Dis 24JAN2021</td>
<td>Is there a need to widely prescribe antibiotics in patients hospitalized for COVID-19?</td>
<td>Moretto F., et al. France gotopaper</td>
<td>Clinics</td>
<td>Comparison of the characteristics and outcomes between patients with and without antibiotics using propensity score matching. > Among the 222 patients included, 174 (78%) were on antibiotics. > Univariate analysis: patients with antibiotics were significantly older, frailer and with a more severe presentation at admission. > An unfavorable outcome was more frequent in patients with antibiotic therapy (HR = 2.94). > In multivariate analysis and on propensity score, antibiotic therapy was not significantly associated with outcome (HR = 1.612). Antibiotics were frequently prescribed in our study and associated with a more severe presentation at admission. However, receiving antibiotics was not associated with outcome.</td>
</tr>
<tr>
<td>Lancet Resp Med. 22JAN2021</td>
<td>Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial</td>
<td>The CORIMUNO-19 Collaborative group France gotopaper</td>
<td>Therapeutics</td>
<td>Aim: to determine whether anakinra, a recombinant human IL-1 receptor antagonist, could improve outcomes in patients in hospital with mild-to-moderate COVID-19 pneumonia. - Usual care + anakinra (200 mg twice a day on days 1–3, 100 mg twice on day 4, 100 mg once on day 5) vs usual care only. Two coprimary outcomes: proportion of patients who had died or needed non-invasive or mechanical ventilation by day 4 (ie, a score of >5 on the WHO-CPS) and survival without need for mechanical or non-invasive ventilation (including high-flow oxygen) at day 14. Results > 116 patients recruited: 59 in the anakinra group, and 57 in the usual care group (2 withdrew). Median age was 66 years, 70% were men. > In the anakinra group, 21/59 (36%) patients had a WHO-CPS score >5 at day 4 versus 21/55 (38%) in the usual care group (median posterior absolute risk difference [ARD] −2.5%), with a posterior probability of ARD of less than 0 (ie, anakinra better than usual care) of 61.2%. > At day 14, 28 (47%) patients in the anakinra group and 28 (51%) in the usual care group needed ventilation or died, with a posterior probability of any efficacy of anakinra (hazard ratio [HR] <1) of 54.5% (median posterior HR 0.97). > At day 90, 16 (27%) patients in the anakinra group and 15 (27%) in the usual care group had died. Serious adverse events occurred in 27 (46%) patients in the anakinra group and 21 (38%) in the usual care group (p=0.45). Anakinra did not improve outcomes in patients with mild-to-moderate COVID-19 pneumonia.</td>
</tr>
<tr>
<td>JAMA 21JAN2021</td>
<td>Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19</td>
<td>Gottlieb R.L., et al. USA gotopaper</td>
<td>Therapeutics</td>
<td>Aim: to determine the effect of bamlanivimab monotherapy and combination therapy with bamlanivimab and etesevimab on SARS-CoV-2 viral load in mild to moderate COVID-19 (BLAZE-1 study). - Bamlanivimab: a single infusion of 700 mg (n = 101), 2800 mg (n = 107), or 7000 mg (n = 101) - Combination treatment: 2800 mg of bamlanivimab and 2800 mg of etesevimab [n = 112] - Placebo (n = 156). Primary end point: change in SARS-CoV-2 log viral load at D11 (±4dys). > Among the 577 randomized (mean age, 44.7 years; 54.6% women), 533 (92.4%) completed the efficacy evaluation period (day 29). > Change in log viral load from baseline at D11 was −3.72 for 700 mg, −4.08 for 2800 mg, −3.49 for 7000 mg, −4.37 for combination treat, and −3.80 for placebo. Compared with placebo, differences in the change in log viral load at D11 were 0.09 for 700 mg, −0.27 for 2800 mg, 0.31 for 7000 mg, and −0.57 for combination treatment. > Among the secondary outcome measures, differences between each treatment group vs the placebo group were statistically significant for 10 of 84 end points. The proportion of patients with COVID-19–related hospitalizations or ED visits was 5.8% (9 events) for placebo, 1.0% (1 event) for 700 mg, 1.9% (2 events) for 2800 mg, 2.0% (2 events) for 7000 mg, and 0.9% (1 event) for combination treatment. > Immediate hypersensitivity reactions were reported in 5 patients (6 bamlanivimab, 2 combination treatment, and 1 placebo). > No deaths occurred during the study treatment. In nonhospitalized patients with mild to moderate COVID-19, bamlanivimab and etesevimab treatment, compared with placebo, was associated with a reduction in SARS-CoV-2 viral load at day 11.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lancet Infect Dis
21JAN21</td>
<td>Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial</td>
<td>Ella R., et al. India gotopaper</td>
<td>Vaccines</td>
<td>Background
BBV152: whole-virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) or alum (Algel).

Methods
› Double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India. (NCT04471519).
› Healthy adults aged 18–55 years Individuals with positive SARS-CoV-2 nucleic acid and/or serology tests excluded.
› Participants randomly assigned to receive either one of three vaccine formulations:
 - 3 μg with Algel-IMDG / 6 μg with Algel-IMDG / 6 μg with Algel / Algel only
 - Two IM doses at d0 et d14
› Primary outcomes: solicited local and systemic reactogenicity events at 2 h and 7 days after vaccination
› Secondary outcome: seroconversion
› Cell-mediated responses were evaluated by intracellular staining and ELISpot.
Findings
› 375 participants enrolled: 100 each were randomly assigned to the three vaccine groups, and 75 were randomly assigned to the control group (Algel only).
› Solicited local and systemic adverse reactions after 2 doses: 17 (17%; 95% CI 10.5–26.1) participants in the 3 μg with Algel-IMDG group, 21 (21%; 13.8–30.5) in the 6 μg with Algel-IMDG group, 14 (14%; 8.1–22.7) in the 6 μg with Algel group, and ten (10%; 6.9–23.6) in the Algel-only group.
› Most common solicited adverse events: injection site pain (17.5% of 375 participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine [2%]), and nausea or vomiting (seven [2%]). All solicited adverse events were mild or moderate, and more frequent after the first dose.
› One SAE (viral pneumonitis) reported in the 6 μg with Algel group, unrelated to the vaccine.
› Seroconversion rates (%) of 87.9, 91.9, and 82.8 in the 3 μg with Algel-IMDG, 6 μg with Algel-IMDG, and 6 μg with Algel groups, respectively.
› CD4+ and CD8+ T-cell responses were detected in a subset of 16 participants from both Algel-IMDG groups.
BBV152 led to tolerable safety outcomes and enhanced immune responses. Both Algel-IMDG formulations were selected for phase 2 immunogenicity trials.</td>
</tr>
<tr>
<td>Science Immunol.
21JAN2021</td>
<td>Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8+ T cells</td>
<td>Kusnadi A., et al. USA gotopaper</td>
<td>Immunology</td>
<td>Aim: Understand anti-viral immune responses. Report from data generated by single-cell RNA sequencing of virus-reactive CD8+ T cells from COVID-19 patients with different clinical severity.

Methods: single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects.
› Recent reports from COVID-19 patients have suggested the presence of exhaustion-related markers in global CD8+ T cell populations.
COVID-19 patients were segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was "exhausted" or not.
Findings:
› SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness.
› SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness.
› Overall, the single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.</td>
</tr>
<tr>
<td>Journal and date</td>
<td>Title</td>
<td>Authors and link</td>
<td>Field of expertise</td>
<td>Key facts</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Lancet Public Health 20JAN2021 | Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study | Quilty B.J., et al. UK gotopaper | Public Health / Epidemiology | **Aim:** to assess the merit of testing contacts to avert onward transmission and to replace or reduce the length of quarantine for uninfected contacts.
> Assuming moderate levels of adherence to quarantine and self-isolation, self-isolation on symptom onset alone can prevent **37%** of onward transmission potential from secondary cases.
> 14 days of post-exposure quarantine reduces transmission by **59%**.
> Quarantine with release after a negative PCR test 7 days after exposure might avert a **similar proportion** (54%; risk ratio [RR] 0·94), as would quarantine with a negative lateral flow antigen test 7 days after exposure (50%; RR 0·88) or daily testing without quarantine for 5 days after tracing (50%; RR 0·88) if all tests are returned negative.
Testing might allow for a substantial reduction in the length of, or replacement of, quarantine with a small excess in transmission risk. Decreasing test and trace delays and increasing adherence will further increase the effectiveness of these strategies. |
| BMJ 20JAN21 | Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial | V.C. Veiga, et al. Brazil gotopaper | Therapeutics | Does tocilizumab improves clinical outcomes for patients with severe or COVID-19?
Methods:
> Randomised, open label trial (NCT04403685)
> Nine hospitals in Brazil, 8 May to 17 July 2020.
> Adults with confirmed Covid-19 who were receiving supplemental oxygen or mechanical ventilation and had abnormal levels of at least two serum biomarkers (C reactive protein, D dimer, lactate dehydrogenase, or ferritin).
> Interventions Tocilizumab (single intravenous infusion of 8 mg/kg) plus standard care (n=65) versus standard care alone (n=64).
> Main outcome: clinical status measured at 15 days, analysed as a composite of death or mechanical ventilation (assumption of odds proportionality was not met).
> The data monitoring committee recommended stopping the trial early, after 129 patients had been enrolled, because of an increased number of deaths at 15 days in the tocilizumab group.
Findings:
> 129 patients enrolled (mean age 57 years; 68% men) and all completed follow-up.
> All patients in the tocilizumab group and two in the standard care group received tocilizumab.
> 18 of 65 (28%) patients in the tocilizumab group and 13 of 64 (20%) in the standard care group were receiving mechanical ventilation or died at day 15 (odds ratio 1.54).
> Death at 15 days occurred in 11 (17%) patients in the tocilizumab group compared with 2 (3%) in the standard care group (odds ratio 6.42).
> Adverse events were reported in 29 of 67 (43%) patients who received tocilizumab and 21 of 62 (34%) who did not receive tocilizumab.
In patients with severe or critical Covid-19, tocilizumab plus standard care was not superior to standard care alone in improving clinical outcomes at 15 days, and it might increase mortality. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **Lancet Microbe**
19JAN2021 | Insight into the practical performance of RT-PCR testing for SARS-CoV-2 using serological data: a cohort study | Zhang Z., et al. China gotopaper | Diagnostics | **Aim:** Assess the practical performance of RT-PCR-based surveillance protocols and determine the extent of undetected SARS-CoV-2 infection in Shenzhen, China.
Methods: cohort study in Shenzhen, China. All RT-PCR(+) close contacts (defined as those who lived in the same residence as, or shared a meal, travelled, or socially interacted with, an index case within 2 days before symptom onset) of all RT-PCR(+) cases of SARS-CoV-2 detected since January, 2020.
Findings:
> Serological samples from 2345 of 4422 RT-PCR(-) close contacts of cases of RT-PCR-confirmed SARS-CoV-2.
> 80 of 880 RT-PCR(-) close contacts were positive on total antibody ELISA.
> The seropositivity rate with total Ab ELISA among RT-PCR(-) close contacts, adjusted for assay performance, was 4.1%, which was significantly higher than among individuals residing in neighbourhoods with no reported cases
> RT-PCR(+) individuals were 8-0 times more likely to report symptoms than those who were RT-PCR(-) but sero-negative.
> RT-PCR did not detect 48 of 134 infected close contacts, and false-negative rates appeared to be associated with stage of infection.
Even rigorous RT-PCR testing protocols might miss a substantial proportion of SARS-CoV-2 infections, perhaps in part due to difficulties in determining the timing of testing in asymptomatic individuals for optimal sensitivity. |
Primary outcome: all-cause 28-day in-hospital mortality.
Secondary outcomes: all-cause death at any time, receipt of mechanical ventilation (MV), readmissions.
> Among 468 patients with COVID-19–related critical illness, 319 (68.2%) were treated with MV and 121 (25.9%) with vasopressors.
> All-cause 28-day in-hospital mortality rate was 29.9%, median ICU stay was 8 days (IQR, 3-17), median hospital stay was 13 days (IQR, 7-25), and all-cause 30-day readmission rate (among nonhospice survivors) was 10.8%.
> Mortality decreased over time, from 43.5% (CI, 31.3-53.8) to 19.2% (CI, 11.6-26.7) between the first and last 15 days in the core adjusted model, whereas patient acuity and other factors did not change.
Among patients with COVID-19–related critical illness admitted to ICUs, mortality seemed to decrease over time despite stable patient characteristics. |
| **Nature**
18JAN2021 | Evolution of antibody immunity to SARS-CoV-2 | Gaebler C., et al. USA gotopaper | Immunology | **Aim:** Assess the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection.
Findings:
> IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titres decrease significantly with IgA being less affected.
> The number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations.
> Analysis of intestinal biopsies obtained from asymptomatic individuals, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel (7/14 volunteers).
> The memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
Individuals who are infected with SARS-CoV-2 could mount a rapid and effective response to the virus upon re-exposure. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> 385 references, 16 unique studies (5922 unique patients). Significant variability in patient selection, study design, setting and stage of illness at which patients were enrolled.
> In the primary analysis, the saliva NAAT pooled sensitivity was 83.2% (95% credible interval [CrI], 74.7%-91.4%) and the pooled specificity was 99.2% (95% CrI, 98.2%-99.8%). The nasopharyngeal swab NAAT had a sensitivity of 84.8% (95% CrI, 76.8%-92.4%) and a specificity of 98.9% (95% CrI, 97.4%-99.8%).
> Results were similar in secondary analyses (on peer-reviewed studies, and on ambulatory settings).
Saliva NAAT diagnostic accuracy is similar to that of nasopharyngeal swab NAAT, especially in the ambulatory setting, supporting larger-scale research on the use of saliva NAAT as an alternative. |
Methods:
> Multicenter, placebo-controlled, phase 1–2a trial, randomised
> Healthy adults: between the ages of 18 and 55 years (cohort 1) and those 65 years of age or older (cohort 3) (≥ 805 participants)
> Cohorte 1 & 3: receive the Ad26.COV2.S vaccine at a dose of 5×10¹⁰ viral particles (low dose) or 1×10¹¹ viral particles (high dose) per milliliter or placebo in a single-dose or two-dose schedule
> Cohorte 2: Longer-term data comparing a single-dose regimen with a two-dose regimen are being collected
Findings related to safety & reactogenicity
After first vaccine dose in cohorts 1 & 3 and after second dose in cohort 1:
> Most frequent solicited adverse events (AE) were fatigue, headache, myalgia, and injection-site pain & most frequent systemic AE = fever
> Systemic adverse events were less common in cohort 3 than in cohort 1 and in those who received the low vaccine dose than in those who received the high dose.
> Reactogenicity was lower after the second dose.
Findings related to immunogenicity profiles
> Neutralizing-antibody titers against wild-type virus were detected in 90% or more of all participants on day 29 after the first vaccine dose, and reached 100% by day 57 with a further increase in titers in cohort 1a.
> Titers remained stable until at least day 71. A second dose provided an increase in the titer by a factor of 2.6 to 2.9 (GMT, 827 to 1266). Spike-binding antibody responses were similar to neutralizing-antibody responses.
> On day 14, CD4⁺ T-cell responses were detected in 76 to 83% of the participants in cohort 1 and in 60 to 67% of those in cohort 3, with a clear skewing toward type 1 helper T cells. CD8⁺ T-cell responses were robust overall but lower in cohort 3.
The safety and immunogenicity profiles of Ad26.COV2.S support further development of this vaccine candidate. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **NEJM 13JAN2021** | Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19 | Joyner M.J., *et al.* USA [gotopaper](#) | Therapeutics | **Aim:** to assess whether convalescent plasma with high antibody levels rather than low antibody levels is associated with a lower risk of death.
Primary outcome: death within 30 days after plasma transfusion. |
| **Science 12JAN2021** | Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice | Cohen A.A., *et al.* USA [gotopaper](#) | Immunology | **Construction of homotypic nanoparticles displaying the RBD of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses** (mosaic nanoparticles; 4-8 distinct RBDs).
> Mice immunized with RBD-nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses.
> **Mosaic-RBD-nanoparticles** elicited antibodies with superior cross-reactive recognition of heterologous RBDs compared to sera from immunizations with homotypic SARS-CoV-2–RBD-nanoparticles or COVID-19 convalescent human plasmas.
> Sera from mosaic-RBD–immunized mice neutralized heterologous pseudotyped coronaviruses equivalently or better after priming than sera from homotypic SARS-CoV-2–RBD-nanoparticle immunizations --
> **no immunogenicity loss** against particular RBDs resulting from co-display.
A single immunization with mosaic-RBD-nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses. |
Methods: Analysis of viral loads, neutralizing antibody titers (nAb), detection of the subgenomic RNAs from 129 hospitalized individuals diagnosed with COVID-19 by RT-PCR
Findings:
> Infectious virus shedding was detected by virus cultures in 23/129 patients (17.8%) hospitalized with COVID-19
> The median duration of shedding infectious virus is 8 days post onset of symptoms and drops below 5% after 15.2 days post onset of symptoms.
> The probability of isolating infectious virus was less than 5% when the nAb titer was 1:80 or higher.
> A serum nAb titre of at least 1:20 (OR of 0.01) is independently associated with non-infectious SARS-CoV-2.
> Quantitative viral RNA load assays and serological assays could be used in test-based strategies to discontinue or de-escalate infection prevention and control precautions.
> Detection of viral subgenomic RNA correlated poorly with shedding of infectious virus |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| **The Lancet** 08JAN2021 | 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study | Huang C.H., *et al*. China [gotopaper](#) | Public Health / Epidemiology - Long COVID | **Aim**: to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors.
> 1733 discharged patients with COVID-19 enrolled: median age of 57 years and 52% were men. The median follow-up time after symptom onset was 186·0 days.
> **Fatigue or muscle weakness** (63%, 1038/1655) and **sleep difficulties** (26%, 437/1655) were the most common symptoms. **Anxiety or depression** was reported among 23% (367/1617) of patients.
> The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5–6.
> The corresponding proportions of patients with **diffusion impairment** were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5–6, and median CT scores were 3·0 for severity scale 3, 4·0 for scale 4, and 5·0 for scale 5–6.
> **After multivariable adjustment**, patients showed an odds ratio (OR) 1·61 for scale 4 versus scale 3 and 4·60 for scale 5–6 versus scale 3 for diffusion impairment; OR 0·88 for scale 4 versus scale 3 and OR 1·77 for scale 5–6 versus scale 3 for anxiety or depression, and OR 0·74 for scale 4 versus scale 3 and 2·69 for scale 5–6 versus scale 3 for fatigue or muscle weakness.
> Of 94 patients with **blood antibodies** tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase.
> 107 of 822 participants without acute kidney injury and with estimated glomerular filtration rate (eGFR) 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up.
At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations. |
Baseline assumptions for the model: incubation period at 5 days, infectious period of 10 days, peak infectiousness occurred at the median of symptom onset, 30% of individuals with infection never develop symptoms and are 75% as infectious as those who do develop symptoms. This implies that persons with infection who never develop symptoms may account for approximately 24% of all transmission.
> In this base case, **59% of all transmission came from asymptomatic transmission**, comprising **35%** from presymptomatic individuals and **24%** from individuals who never develop symptoms.
> **Under a broad range of values for each assumption, at least 50% of new infections** was estimated to have originated from exposure to individuals with infection but without symptoms.
In this decision analytical model, transmission from asymptomatic individuals was **estimated to account for more than half of all transmissions**. Measures such as wearing masks, hand hygiene, social distancing, and strategic testing of people who are not ill will be foundational to slowing the spread of COVID-19. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
> Retrospective cohort study, adults with acute inpatient hospital admission (March -August 2020)
> confirmed or suspected COVID-19
> chronic immunosuppression was defined as prescriptions for immunosuppressive drugs current at the time of admission.
> Outcomes: mechanical ventilation, in-hospital mortality, and length of stay.
Findings:
> 2121 patients admitted with laboratory-confirmed (1967; 93%) or suspected (154; 7%) COVID-19
> median age of 55 years (40–67).
> of these, 108 (5%) were classified as immunosuppressed before COVID-19, primarily with prednisone (>7.5 mg/day), tacrolimus, or mycophenolate mofetil.
> Among the entire cohort, 311 (15%) received mechanical ventilation
> The median (interquartile range) length of stay was 5.2 (2.5–10.6) days
> 1927 (91%) survived to discharge
> no significant differences in the risk of mechanical ventilation, in-hospital mortality or length of stay among individuals with immunosuppression and counterparts.
Chronic use of immunosuppressive drugs was neither associated with worse nor better clinical outcomes among adults hospitalized with COVID-19 in this setting. |

> Diagnostic study conducted in a COVID-19 screening center in France (March-April, 2020)
> Participants: health care workers or outpatients with symptoms or with close contact with an index case.
> Participants interviewed to ascertain their symptoms and then Clinical Olfactory Dysfunction Assessment (CODA) (ad hoc test developed for a simple and fast evaluation of olfactory function). Assessment followed a standardized procedure in which participants identified and rated the intensity of 3 scents (lavender, lemongrass, and mint) to achieve a summed score ranging from 0 to 6. The COVID-19 status was assessed using RT PCR.
Findings:
> 809 participants, female to male sex ratio: 2.8. Mean age: 41.8 years (18-94).
> Asymptomatic or mild disease patients; 58 (7.2%) tested positive for SARS-CoV-2.
> Chemosensory dysfunction was reported by 20 of 58 participants (34.5%) with confirmed COVID-19 vs 29 of 751 participants (3.9%) who tested negative for COVID-19
> Olfactory dysfunction, either self-reported or clinically ascertained (CODA score ≤3), yielded similar sensitivity and specificity for COVID-19 diagnosis.
> Concordance was high between reported and clinically tested olfactory dysfunction, with a Gwet AC1 of 0.95 (95% CI, 0.93-0.97).
> Of 19 participants, 15 (78.9%) with both reported olfactory dysfunction and a CODA score of 3 or lower were confirmed to have COVID-19.
> The CODA score also revealed 5 of 19 participants (26.3%) with confirmed COVID-19 who had previously unperceived olfactory dysfunction.
Olfactory dysfunction was suggestive of COVID-19, particularly when clinical testing confirmed anamnesis. However, normal olfaction was most common among patients with COVID-19. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| NEJM 07JAN2021 | Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers | Lumley S.F., et al. UK | Immunology | > Study relationship between the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the risk of subsequent reinfection
> Incidence of SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) in seropositive and seronegative HCW attending testing of asymptomatic and symptomatic staff at Oxford University Hospitals
> Baseline antibody status was determined by anti-spike (primary analysis) and anti-nucleocapsid IgG assays
> Followed for up to 31 weeks
> 12,541 health care workers participated having anti-spike IgG measured
> The presence of anti-spike or anti-nucleocapsid IgG antibodies was associated with a substantially reduced risk of SARS-CoV-2 reinfection in the ensuing 6 months. |
| NEJM 06JAN21 | Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults | Libster R., et al. Argentina/USA | Therapeutics | > Randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against SARS-CoV-2 in older adult patients within 72 hours after the onset of mild Covid-19 symptoms.
> 160 patients randomized
Primary end point: severe respiratory disease (respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both)
Trial stopped early at 76% of projected sample size because a decrease in Covid-19.
Findings:
> Severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P=0.03), with a relative risk reduction of 48%.
> No solicited adverse events were observed.
Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. |
| Nature 06JAN2021| A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity | Legros V., et al. France | Immunology | Cohort study of 140 SARS-CoV-2 qPCR-confirmed infections, including patients with mild symptoms and more severe forms (intensive care included).
The neutralizing antibody (nAb) responses were assessed using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike).
Findings:
> ICU patients displayed high nAb activity compared to other groups with milder disease symptoms. NAb titers correlated strongly with disease severity and with anti-spike IgG levels.
> The anti-S IgG response can be used as a marker of neutralizing activity in individuals.
> Serum from individuals diagnosed with OC43, 229E, NL63, and HKU1 coronavirus infections but not infected with SARS-CoV-2 failed to cross-neutralize SARS-CoV-2 suggesting the absence of cross-neutralization between SARS-CoV-2 and endemic coronaviruses.
> The D614G mutation did not affect the nAb activity of the serum samples from our cohort indicating that this highly prevalent mutation is not associated with SARS-CoV-2 resistance to neutralization. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
<th></th>
</tr>
</thead>
</table>
| Science 06JAN2021 | Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection | Dan J.M., et al. USA [gotopaper](#) | Immunology | > Understanding immune memory to SARS-CoV-2 and for assessing the likely future course of the COVID-19 pandemic.
> 2254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection

Findings
> IgG to the Spike protein was relatively stable over 6+ months
> Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset
> SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3-5 months

Each component of SARS-CoV-2 immune memory exhibited distinct kinetics | |
| Clin Infect Dis. 06JAN2021 | The duration, dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers | Lumley S.F., et al. USA [gotopaper](#) | Immunology | > SARS-CoV-2 IgG antibody measurements used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection
> 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers with measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG
> Interval censored survival analysis was used to investigate the duration of detectable responses
> Bayesian mixed linear models were used to investigate anti-nucleocapsid waning

Findings
> SARS-CoV-2 anti-nucleocapsid antibodies wane within months (Anti-nucleocapsid IgG levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post first PCR-positive test, before beginning to fall), and faster in younger adults and those without symptoms.
> Higher maximum observed anti-nucleocapsid titres were associated with longer estimated antibody half-lives
> Anti-spike IgG remains stably detected.
> Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection | |
| JAMA Netw. 05JAN2021 | Estimation of US SARS-CoV-2 Infections, Symptomatic Infections, Hospitalizations, and Deaths Using Seroprevalence Surveys | Angulo F.J., et al. USA [gotopaper](#) | Public Health / Epidemiology | Cross-sectional study of respondents of all ages, data from 4 regional and 1 nationwide Centers for Disease Control and Prevention (CDC) seroprevalence surveys between April and August 2020 were used to estimate infection and symptomatic underreporting multipliers.

Main Outcomes: SARS-CoV-2 infections, symptomatic infections, hospitalizations, and deaths.

Findings:
> 14.3% of the US population was infected with SARS-CoV-2 and 8.6% had a symptomatic infection, with an infection hospitalization ratio of 2.0% and symptomatic fatality ratio of 1.1% through Nov 15, 2020.

The US population remains a long way from herd immunity. The number of estimated COVID-19 deaths is also remarkably more than the reported deaths in the US through Nov 15, 2020, supporting the conclusion that approximately 35% of COVID-19 deaths are not reported.

Limitations: Estimate the COVID-19 disease burden in the US using underreporting multipliers derived from the 10 specific states may not be nationally representative. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
</table>
| BMJ Thorax 05JAN2021 | Current smoking and COVID-19 risk: results from a population symptom app in over 2.4 million people | Hopkinson N.S., et al. UK | Public Health / Epidemiology | Main study outcome: development of ‘classic’ symptoms of COVID-19 during the pandemic defined as fever, new persistent cough and breathlessness and their association with current smoking.
> UK users of the Zoe COVID-19 Symptom Study app provided baseline data including demographics, anthropometrics, smoking status and medical conditions, and were asked to log their condition daily.
> Participants who reported that they did not feel physically normal were then asked by the app to complete a series of questions, including 14 potential COVID-19 symptoms and about hospital attendance.
> The number of concurrent COVID-19 symptoms was used as a proxy for severity and the pattern of association between symptoms was also compared between smokers and non-smokers.
Findings:
Data on 2 401 982 participants, mean (SD) age 43.6 (15.1) years, 63.3% female, overall smoking prevalence 11.0%.
> 834 437 (35%) participants reported being unwell and entered one or more symptoms.
>Current smokers were more likely to report symptoms suggesting a diagnosis of COVID-19; classic symptoms adjusted OR (95% CI) 1.14 (1.10 to 1.18); >5 symptoms 1.29 (1.26 to 1.31); >10 symptoms 1.50 (1.42 to 1.58).
> The pattern of association between reported symptoms did not vary between smokers and non-smokers.
Data are consistent with people who smoke being at an increased risk of developing symptomatic COVID-19. |
Main Outcome: Death due to any cause within 30 days of the 1st positive SARS-CoV-2 test result.
Findings:
>Compared with residents aged 75 to 79 years, the odds of death were 1.46 times higher for residents aged 80 to 84 years, 1.59 times higher for residents aged 85 to 89 years, and 2.14 times higher for residents aged 90 years or older.
>Women had lower risk for 30-day mortality than men (odds ratio 0.69).
>Comorbidities associated with 30-day mortality: diabetes (OR, 1.21) and chronic kidney disease (OR, 1.33).
>Fever (OR, 1.66), shortness of breath (OR, 2.52), tachycardia (OR, 1.31), and hypoxia (OR, 2.05).
>Compared with intact cognitively residents: the odds of death among residents with moderate cognitive impairment (CI) were 2.09 times higher, and 2.79 times higher for residents with severe CI.
>Compared with residents with no or limited impairment in physical function (IPF), the odds of death among residents with moderate IPF were 1.49 times higher, and 1.64 times higher among residents with severe IPF.
Once infected, those with baseline functional limitations, cognitive impairment, and disease severity are at heightened risk for mortality. |
<table>
<thead>
<tr>
<th>Journal and date</th>
<th>Title</th>
<th>Authors and link</th>
<th>Field of expertise</th>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science 04JAN2021</td>
<td>Neutralizing antibody titres in SARS-CoV-2 infections</td>
<td>Lau E.H.Y., et al. USA gotopaper</td>
<td>Immunology</td>
<td>Characterization of neutralizing antibody persistence in infected patients. Testing of 293 sera from an observational cohort of 195 reverse transcription polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 infections collected from 0 to 209 days after onset of symptoms. Findings: > Of 115 sera collected ≥61 days after onset of illness tested using plaque reduction neutralization (PRNT) assays, 99.1% remained seropositive for both 90% (PRNT90) and 50% (PRNT50) neutralization endpoints. > PRNT50 titres dropping to the detection limit of a titre of 1:10 for severe, mild and asymptomatic patients takes at least 372, 416 and 133 days > At day 90 after onset of symptoms (or initial RT-PCR detection in asymptomatic infections), it took 69, 87 and 31 days for PRNT50 antibody titres to decrease by half (T1/2) in severe, mild and asymptomatic infections, respectively. > Patients with severe disease had higher peak PRNT90 and PRNT50 antibody titres than patients with mild or asymptomatic infections. > Age did not appear to compromise antibody responses, even after accounting for severity. SARS-CoV-2 infection elicits robust neutralizing antibody titres in most individuals.</td>
</tr>
<tr>
<td>Nature Commun. 04JAN2021</td>
<td>Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity</td>
<td>Ryan K.A., et al. UK gotopaper</td>
<td>Immunology / Preclinical model</td>
<td>> Understand if ferrets are a suitable species for a model of human SARS-CoV-2 infection > Dose titration study of SARS-CoV-2 in the ferret model > Animals are challenged intranasally with a range of titres of SARS-CoV-2 (5 × 10^2, 5 × 10^4 and 5 × 10^6 pfu) in 1 ml volume Findings: > After a high (5 × 10^6 pfu) and medium (5 × 10^4 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals > Only 1/6 ferrets show similar signs after low dose (5 × 10^2 pfu) challenge > Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology > The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group > This ferret model of SARS-CoV-2 infection presents a mild clinical disease</td>
</tr>
<tr>
<td>Clin Infect Dis. 03JAN2021</td>
<td>Distinct disease severity between children and older adults with COVID-19: Impacts of ACE2 expression, distribution, and lung progenitor cells</td>
<td>Zhang Z., et al. China gotopaper</td>
<td>Epidemiology</td>
<td>> Examine the expression pattern of angiotensin-converting enzyme 2 (ACE2), the cell-entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the role of lung progenitor cells in children and older patients. > cohort of 299 patients with COVID-19 > Expression and distribution of ACE2 and lung progenitor cells examinations: combination of public single-cell RNA-seq datasets, lung biopsies, and ex vivo infection of lung tissues with SARS-CoV-2 pseudovirus in children and older adults Findings: > Compared to children, ACE2 positive cells are generally decreased in older adults and mainly presented in the lower pulmonary tract (alveolar region) and rarely in airway regions in the older adults (p < 0.01). > The lung progenitor cells are also decreased. These risk factors may impact disease severity and recovery from pneumonia caused by SARS-CoV-2 infection in older patients.</td>
</tr>
</tbody>
</table>